1
|
Radmilović-Radjenović M, Sabo M, Prnova M, Šoltes L, Radjenović B. Finite Element Analysis of the Microwave Ablation Method for Enhanced Lung Cancer Treatment. Cancers (Basel) 2021; 13:cancers13143500. [PMID: 34298714 PMCID: PMC8306858 DOI: 10.3390/cancers13143500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Microwave ablation is a promising modality for treating cancerous tumor cells in patients with localized lung cancer who are non-surgical candidates. Microwave ablation requires the control of the elevation of temperature, ensuring the destruction of cancer cells without damaging healthy tissue. Despite the unquestionable benefits, such as enlarged ablation zones and reduced procedure times, the respiratory movement of the lungs may affect the development and evolution of the necrotic tissue. Apart from the experimental methods, computer modeling has proven to be a powerful approach to improving the ablative treatment’s performance. This study aims to provide a step forward in patient safety by delivering optimal conditions necessary for microwave ablation to be as effective as possible for curing lung cancer with minimized invasiveness and collateral damage. The primary goal is to transfer the treatment plan based on simulation outputs into a reliable and safe microwave ablation procedure. Abstract Knowledge of the frequency dependence of the dielectric properties of the lung tissues and temperature profiles are essential characteristics associated with the effective performance of microwave ablation. In microwave ablation, the electromagnetic wave propagates into the biological tissue, resulting in energy absorption and providing the destruction of cancer cells without damaging the healthy tissue. As a consequence of the respiratory movement of the lungs, however, the accurate prediction of the microwave ablation zone has become an exceptionally demanding task. For that purpose, numerical modeling remains a primordial tool for carrying out a parametric study, evaluating the importance of the inherent phenomena, and leading to better optimization of the medical procedure. This paper reports on simulation studies on the effect of the breathing process on power dissipation, temperature distribution, the fraction of damage, and the specific absorption rate during microwave ablation. The simulation results obtained from the relative permittivity and conductivity for inflated and deflated lungs are compared with those obtained regardless of respiration. It is shown that differences in the dielectric properties of inflated and deflated lungs significantly affect the time evolution of the temperature and its maximum value, the time, the fraction of damage, and the specific absorption rate. The fraction of damage determined from the degree of tissue injury reveals that the microwave ablation zone is significantly larger under dynamic physical parameters. At the end of expiration, the ablation lesion area is more concentrated around the tip and slot of the antenna, and the backward heating effect is smaller. The diffuse increase in temperature should reach a certain level to destroy cancer cells without damaging the surrounding tissue. The obtained results can be used as a guideline for determining the optimal conditions to improve the overall success of microwave ablation.
Collapse
Affiliation(s)
| | - Martin Sabo
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovicova 2, 84216 Bratislava, Slovakia; (M.S.); (M.P.); (L.Š.)
| | - Marta Prnova
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovicova 2, 84216 Bratislava, Slovakia; (M.S.); (M.P.); (L.Š.)
| | - Lukaš Šoltes
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Ilkovicova 2, 84216 Bratislava, Slovakia; (M.S.); (M.P.); (L.Š.)
| | - Branislav Radjenović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia;
| |
Collapse
|
2
|
Souli MP, Klonos P, Fragopoulou AF, Mavragani IV, Pateras IS, Kostomitsopoulos N, Margaritis LH, Zoumpoulis P, Kaklamanis L, Kletsas D, Gorgoulis VG, Kyritsis A, Pissis P, Georgakilas AG. Applying Broadband Dielectric Spectroscopy (BDS) for the Biophysical Characterization of Mammalian Tissues under a Variety of Cellular Stresses. Int J Mol Sci 2017; 18:ijms18040838. [PMID: 28420124 PMCID: PMC5412422 DOI: 10.3390/ijms18040838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022] Open
Abstract
The dielectric properties of biological tissues can contribute non-invasively to a better characterization and understanding of the structural properties and physiology of living organisms. The question we asked, is whether these induced changes are effected by an endogenous or exogenous cellular stress, and can they be detected non-invasively in the form of a dielectric response, e.g., an AC conductivity switch in the broadband frequency spectrum. This study constitutes the first methodological approach for the detection of environmental stress-induced damage in mammalian tissues by the means of broadband dielectric spectroscopy (BDS) at the frequencies of 1-10⁶ Hz. Firstly, we used non-ionizing (NIR) and ionizing radiation (IR) as a typical environmental stress. Specifically, rats were exposed to either digital enhanced cordless telecommunication (DECT) radio frequency electromagnetic radiation or to γ-radiation, respectively. The other type of stress, characterized usually by high genomic instability, was the pathophysiological state of human cancer (lung and prostate). Analyzing the results of isothermal dielectric measurements provided information on the tissues' water fraction. In most cases, our methodology proved sufficient in detecting structural changes, especially in the case of IR and malignancy. Useful specific dielectric response patterns are detected and correlated with each type of stress. Our results point towards the development of a dielectric-based methodology for better understanding and, in a relatively invasive way, the biological and structural changes effected by radiation and developing lung or prostate cancer often associated with genomic instability.
Collapse
Affiliation(s)
- Maria P Souli
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Panagiotis Klonos
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Adamantia F Fragopoulou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, 15701 Athens, Greece.
| | - Ifigeneia V Mavragani
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 11527 Athens, Greece.
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facilities, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, 11527 Athens, Greece.
| | - Lukas H Margaritis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, 15701 Athens, Greece.
| | - Pavlos Zoumpoulis
- Diagnostic Echotomography Medical S.A., 317C Kifissias Avenue, 145 61 Kifissia, Greece.
| | - Loukas Kaklamanis
- Department of Pathology, Onassis Cardiac Surgery Center, 356 Sygrou Avenue, 17674 Kallithea, Greece.
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 60037 Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, 11527 Athens, Greece.
| | - Apostolos Kyritsis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Polycarpos Pissis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|