1
|
Borrelli M, Shokohyar S, Rampichini S, Bruseghini P, Doria C, Limonta EG, Ferretti G, Esposito F. Energetics of sinusoidal exercise below and across critical power and the effects of fatigue. Eur J Appl Physiol 2024; 124:1845-1859. [PMID: 38242972 PMCID: PMC11130025 DOI: 10.1007/s00421-023-05410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Previous studies investigating sinusoidal exercise were not devoted to an analysis of its energetics and of the effects of fatigue. We aimed to determine the contribution of aerobic and anaerobic lactic metabolism to the energy balance and investigate the fatigue effects on the cardiorespiratory and metabolic responses to sinusoidal protocols, across and below critical power (CP). METHODS Eight males (26.6 ± 6.2 years; 75.6 ± 8.7 kg; maximum oxygen uptake 52.8 ± 7.9 ml·min-1·kg-1; CP 218 ± 13 W) underwent exhausting sinusoidal cycloergometric exercises, with sinusoid midpoint (MP) at CP (CPex) and 50 W below CP (CP-50ex). Sinusoid amplitude (AMP) and period were 50 W and 4 min, respectively. MP, AMP, and time-delay (tD) between mechanical and metabolic signals of expiratory ventilation (V ˙ E ), oxygen uptake (V ˙ O 2 ), and heart rate ( f H ) were assessed sinusoid-by-sinusoid. Blood lactate ([La-]) and rate of perceived exertion (RPE) were determined at each sinusoid. RESULTS V ˙ O 2 AMP was 304 ± 11 and 488 ± 36 ml·min-1 in CPex and CP-50ex, respectively. Asymmetries between rising and declining sinusoid phases occurred in CPex (36.1 ± 7.7 vs. 41.4 ± 9.7 s forV ˙ O 2 tD up and tD down, respectively; P < 0.01), with unchanged tDs.V ˙ O 2 MP and RPE increased progressively during CPex. [La-] increased by 2.1 mM in CPex but remained stable during CP-50ex. Anaerobic contribution was larger in CPex than CP-50ex. CONCLUSION The lower aerobic component during CPex than CP-50ex associated with lactate accumulation explained lowerV ˙ O 2 AMP in CPex. The asymmetries in CPex suggest progressive decline of muscle phosphocreatine concentration, leading to fatigue, as witnessed by RPE.
Collapse
Affiliation(s)
- Marta Borrelli
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Sheida Shokohyar
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy.
| | - Paolo Bruseghini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Eloisa Guglielmina Limonta
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| |
Collapse
|
2
|
Fujita M, Kamibayashi K, Horiuchi M, Ebine N, Fukuoka Y. Alterations in step frequency and muscle activities using body weight support influence the ventilatory response to sinusoidal walking in humans. Sci Rep 2023; 13:15534. [PMID: 37726511 PMCID: PMC10509255 DOI: 10.1038/s41598-023-42811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
The use of body weight support (BWS) can reveal important insights into the relationship between lower-limb muscle activities and the ventilatory response during sinusoidal walking. Here, healthy participants (n = 15) walked on a treadmill while 0%, 30%, and 50% of their body weight was supported with BWS. The walking speed was varied sinusoidally between 3 and 6 km h-1, and three different frequencies, and periods ranging from 2 to 10 min were used. Breath-by-breath ventilation ([Formula: see text]) and CO2 output ([Formula: see text]) were measured. The tibialis anterior (TA) muscle activity was measured by electromyography throughout the walking. The amplitude (Amp), normalized Amp [Amp ratio (%)], and phase shift (PS) of the sinusoidal variations in measurement variables were calculated using a Fourier analysis. The results revealed that the Amp ratio in [Formula: see text] increased with the increase in BWS. A steeper slope of the [Formula: see text]-[Formula: see text] relationship and greater [Formula: see text]/[Formula: see text] values were observed under reduced body weight conditions. The Amp ratio in TA muscle was significantly positively associated with the Amp ratio in the [Formula: see text] (p < 0.001). These findings indicate that the greater amplitude in the TA muscle under BWS may have been a potent stimulus for the greater response of ventilation during sinusoidal walking.
Collapse
Affiliation(s)
- Mako Fujita
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Masahiro Horiuchi
- National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
| | - Naoyuki Ebine
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yoshiyuki Fukuoka
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
3
|
Fujita M, Kamibayashi K, Aoki T, Horiuchi M, Fukuoka Y. Influence of Step Frequency on the Dynamic Characteristics of Ventilation and Gas Exchange During Sinusoidal Walking in humans. Front Physiol 2022; 13:820666. [PMID: 35492612 PMCID: PMC9039249 DOI: 10.3389/fphys.2022.820666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
We tested the hypothesis that restricting either step frequency (SF) or stride length (SL) causes a decrease in ventilatory response with limited breath frequency during sinusoidal walking. In this study, 13 healthy male and female volunteers (mean ± SD; age: 21.5 ± 1.8 years, height: 168 ± 7 cm, weight: 61.5 ± 8.3 kg) participated. The walking speed was sinusoidally changed between 50 and 100 m⋅min–1 with periods from 10 to 1 min. Using a customized sound system, we fixed the SF at 120 steps⋅min–1 with SL variation (0.83–0.41 m) (SFfix) or fixed the SL at 0.7 m with SF variation (143–71 steps⋅min–1) (SLfix) during the subjects’ sinusoidal walking. Both the subjects’ preferred locomotion pattern without a sound system (Free) and the unprompted spontaneous locomotor pattern for each subject (Free) served as the control condition. We measured breath-by-breath ventilation [tidal volume (VT) and breathing frequency (Bf)] and gas exchange [CO2 output (V.CO2), O2 uptake (V.O2)]. The amplitude (Amp) and the phase shift (PS) of the fundamental component of the ventilatory and gas exchange variables were calculated. The results revealed that the SFfix condition decreased the Amp of the Bf response compared with SLfix and Free conditions. Notably, the Amp of the Bf response under SFfix was reduced by less than one breath at the periods of 5 and 10 min. In contrast, the SLfix condition resulted in larger Amps of Bf and V.E responses as well as Free. We thus speculate that the steeper slope of the V.E-V.CO2 relationship observed under the SLfix might be attributable to the central feed-forward command or upward information from afferent neural activity by sinusoidal locomotive cadence. The PSs of the V.E, V.O2, and V.CO2 responses were unaffected by any locomotion patterns. Such a sinusoidal wave manipulation of locomotion variables may offer new insights into the dynamics of exercise hyperpnea.
Collapse
Affiliation(s)
- Mako Fujita
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | | | - Tomoko Aoki
- Faculty of Environmental Symbiotic Science, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Japan
| | - Yoshiyuki Fukuoka
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
- *Correspondence: Yoshiyuki Fukuoka,
| |
Collapse
|
4
|
Girardi M, Gattoni C, Mauro L, Capelli C. The effects of sinusoidal linear drifts on the estimation of cardiorespiratory dynamic parameters during sinusoidal workload forcing: a simulation study. Respir Physiol Neurobiol 2021; 289:103652. [PMID: 33677090 DOI: 10.1016/j.resp.2021.103652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/15/2022]
Abstract
This study aimed at investigating whether: 1) different sinusoidal linear drifts would affect the estimation of the dynamic parameters amplitude (A) and phase lag (φ) of minute ventilation (V˙E), oxygen uptake, carbon dioxide production and heart rate (HR) sinusoidal responses when the frequency analysis technique (F) is performed; 2) the Marquardt-Levenberg non-linear fitting technique (ML) would provide more precise estimations of A and φ of drifted sinusoidal responses compared to F. For each cardiorespiratory variable, fifteen responses to sinusoidal forcing of different sinusoidal periods were simulated by using a first-order dynamic linear model. A wide range of linear drifts were subsequently applied. A and φ were computed for all drifted and non-drifted responses by using both F (AF and φF) and ML (AML and φML). For non-drifted responses, no differences between AF vs AML and φF vs φML were found. Whereas AF and φF were affected by the sinusoidal linear drifts, AML and φML were not. Significant interaction effects (technique x drift) were found for A (P < 0.001; ƞP2 > 0.247) and φ (P < 0.001; ƞP2 > 0.851). Higher goodness of fit values were observed when using ML for drifted V˙E and HR responses only. The present findings suggest ML as a recommended technique to use when sinusoidal linear drifts occur during sinusoidal exercise, and provide new insights on how to analyse drifted cardiorespiratory sinusoidal responses.
Collapse
Affiliation(s)
- Michele Girardi
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom.
| | - Chiara Gattoni
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, ME4 4AG, United Kingdom
| | - Lorenzo Mauro
- Department of Computer, Control and Management Engineering, University of Rome "La Sapienza", via Ariosto 25, 00185, Rome, Italy
| | - Carlo Capelli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, via Felice Casorati 43, 1-37131, Verona, Italy
| |
Collapse
|
5
|
Fukuoka Y, Iihoshi M, Nazunin JT, Abe D, Fukuba Y. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans. PLoS One 2017; 12:e0168517. [PMID: 28076413 PMCID: PMC5226792 DOI: 10.1371/journal.pone.0168517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback.
Collapse
Affiliation(s)
- Yoshiyuki Fukuoka
- Laboratory of Environmental Physiology, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
- Laboratory of Environmental Physiology, Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
- * E-mail:
| | - Masaaki Iihoshi
- Laboratory of Environmental Physiology, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Juhelee Tuba Nazunin
- Laboratory of Environmental Physiology, Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Daijiro Abe
- Biodynamics Laboratory, Center for Health and Sports Science, Kyushu Sangyo University, Fukuoka, Japan
| | - Yoshiyuki Fukuba
- Department of Sports Science and Physiology, Hiroshima Prefectural University, Hiroshima, Japan
| |
Collapse
|
6
|
Caterini JE, Duffin J, Wells GD. Limb movement frequency is a significant modulator of the ventilatory response during submaximal cycling exercise in humans. Respir Physiol Neurobiol 2015; 220:10-6. [PMID: 26369445 DOI: 10.1016/j.resp.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/16/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
Human experimentation investigating the contribution of limb movement frequency in determining the fast exercise drive to breathe has produced controversial findings. To evaluate the role of limb movement frequency in determining the fast exercise drive to breathe, endurance runners and recreationally-active controls performed two sinusoidal exercise protocols on a cycle ergometer. One protocol was performed at constant workload with sinusoidal pedaling cadence, and a second with sinusoidal workload at constant cadence. Metabolic rate (VO2) increases and means were matched between these two experiments. The ventilatory response was significantly faster when limb movement speed was varied, compared to when pedal loading was varied (18.49 ± 15.6s vs. 50.5 ± 14.5s, p<0.05). Ventilation response amplitudes were significantly higher during pedal cadence variation versus pedal loading variation (3.99 ± 0.25 vs. 2.58 ± 0.17 L/min, p<0.05). Similar findings were obtained for endurance athletes, with significantly attenuated ventilation responses to exercise versus control subjects. We conclude that fast changes in limb movement frequency are a potent stimulus for ventilation at submaximal workloads, and that this response is susceptible to attenuation through training.
Collapse
Affiliation(s)
- Jessica E Caterini
- Graduate Department of Exercise Sciences, University of Toronto, 100 Devonshire Place, Toronto, Ontario M5S 2C9, Canada; Physiology and Experimental Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Anaesthesia, University of Toronto Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4 Canada
| | - Gregory D Wells
- Physiology and Experimental Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, Ontario M5S2C9, Canada.
| |
Collapse
|
7
|
Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:618291. [PMID: 25654116 PMCID: PMC4310256 DOI: 10.1155/2015/618291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (VCO2). Naturally, to match theVCO2while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from3.0±0.1to4.1±0.2mph, which resulted in a significant(P<0.05)increase in the mean step frequency (steps per minute) from118±10at 3 mph (i.e., 100% of body weight) to133±6at 4.1 mph (i.e., 50% of body weight). The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.
Collapse
|
8
|
Yamashiro SM, Kato T. Modeling rate sensitivity of exercise transient responses to limb motion. J Appl Physiol (1985) 2014; 117:699-705. [PMID: 25103968 DOI: 10.1152/japplphysiol.00391.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume.
Collapse
Affiliation(s)
- Stanley M Yamashiro
- Biomedical Engineering Department, University of Southern California, Los Angeles California; and
| | - Takahide Kato
- Department of General Education, Toyota National College of Technology, Toyota, Japan
| |
Collapse
|
9
|
Abstract
Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments.
Collapse
Affiliation(s)
- Donald Bartlett
- Department of Physiology & Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
10
|
Abstract
During exercise by healthy mammals, alveolar ventilation and alveolar-capillary diffusion increase in proportion to the increase in metabolic rate to prevent PaCO2 from increasing and PaO2 from decreasing. There is no known mechanism capable of directly sensing the rate of gas exchange in the muscles or the lungs; thus, for over a century there has been intense interest in elucidating how respiratory neurons adjust their output to variables which can not be directly monitored. Several hypotheses have been tested and supportive data were obtained, but for each hypothesis, there are contradictory data or reasons to question the validity of each hypothesis. Herein, we report a critique of the major hypotheses which has led to the following conclusions. First, a single stimulus or combination of stimuli that convincingly and entirely explains the hyperpnea has not been identified. Second, the coupling of the hyperpnea to metabolic rate is not causal but is due to of these variables each resulting from a common factor which link the circulatory and ventilatory responses to exercise. Third, stimuli postulated to act at pulmonary or cardiac receptors or carotid and intracranial chemoreceptors are not primary mediators of the hyperpnea. Fourth, stimuli originating in exercising limbs and conveyed to the brain by spinal afferents contribute to the exercise hyperpnea. Fifth, the hyperventilation during heavy exercise is not primarily due to lactacidosis stimulation of carotid chemoreceptors. Finally, since volitional exercise requires activation of the CNS, neural feed-forward (central command) mediation of the exercise hyperpnea seems intuitive and is supported by data from several studies. However, there is no compelling evidence to accept this concept as an indisputable fact.
Collapse
Affiliation(s)
- Hubert V Forster
- Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
11
|
Abstract
This paper presents a personal view of research into the exercise drive to breathe that can be observed to act immediately to increase breathing at the start of rhythmic exercise. It is based on a talk given at the Experimental Biology 2013 meeting in a session entitled ‘Recent advances in understanding mechanisms regulating breathing during exercise’. This drive to breathe has its origin in a combination of central command, whereby voluntary motor commands to the exercising muscles produce a concurrent respiratory drive, and afferent feedback, whereby afferent information from the exercising muscles affects breathing. The drive at the start and end of rhythmic exercise is proportional to limb movement frequency, and its magnitude decays as exercise continues so that the immediate decrease of ventilation at the end of exercise is about 60% of the immediate increase at the start. With such evidence for the effect of this fast drive to breathe at the start and end of rhythmic exercise, its existence during exercise is hypothesised. Experiments to test this hypothesis have, however, provided debatable evidence. A fast drive to breathe during both ramp and sine wave changes in treadmill exercise speed and grade appears to be present in some individuals, but is not as evident in the general population. Recent sine-wave cycling experiments show that when cadence is varied sinusoidally the ventilation response lags by about 10 s, whereas when pedal loading is varied ventilation lags by about 30 s. It therefore appears that limb movement frequency is effective in influencing ventilation during exercise as well as at the start and end of exercise.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
12
|
An examination of exercise mode on ventilatory patterns during incremental exercise. Eur J Appl Physiol 2010; 110:557-62. [PMID: 20556417 DOI: 10.1007/s00421-010-1541-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Both cycle ergometry and treadmill exercise are commonly employed to examine the cardiopulmonary system under conditions of precisely controlled metabolic stress. Although both forms of exercise are effective in elucidating a maximal stress response, it is unclear whether breathing strategies or ventilator efficiency differences exist between exercise modes. The present study examines breathing strategies, ventilatory efficiency and ventilatory capacity during both incremental cycling and treadmill exercise to volitional exhaustion. Subjects (n = 9) underwent standard spirometric assessment followed by maximal cardiopulmonary exercise testing utilising cycle ergometry and treadmill exercise using a randomised cross-over design. Respiratory gases and volumes were recorded continuously using an online gas analysis system. Cycling exercise utilised a greater portion of ventilatory capacity and higher tidal volume at comparable levels of ventilation. In addition, there was an increased mean inspiratory flow rate at all levels of ventilation during cycle exercise, in the absence of any difference in inspiratory timing. Exercising V(E)/VCO₂slope and the lowest V(E)/VCO₂value, was lower during cycling exercise than during the treadmill protocol indicating greater ventilatory efficiency. The present study identifies differing breathing strategies employed during cycling and treadmill exercise in young, trained individuals. Exercise mode should be accounted for when assessing breathing patterns and/or ventilatory efficiency during incremental exercise.
Collapse
|
13
|
Hotta N, Yamamoto K, Ishida K. The effect of external cuff pressure on initial exercise hyperpnea. J Physiol Anthropol 2009; 28:91-5. [PMID: 19346669 DOI: 10.2114/jpa2.28.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The purpose of this study was to investigate the effect of an increase in intramuscular pressure on ventilatory response at the onset of exercise. Seven subjects participated in this study. We measured ventilatory responses to a 20-s single-arm extension-flexion exercise and passive movement. Each subject performed two kinds of exercise and passive movement in random order: in one, the exercising arm was encircled with a deflated cuff placed around the upper arm; in the other, the exercising arm was compressed by a cuff placed around the upper arm, which was inflated to 25 mmHg. We found that neither ventilatory response during exercise nor during passive movement was significantly changed even though the cuff compressed the arm. In conclusion, the increased intramuscular pressure caused by the 25-mmHg pressure of the cuff did not have a significant influence on ventilatory response at the onset of exercise.
Collapse
Affiliation(s)
- Norio Hotta
- Research Institute of Environmental Medicine, Nagoya University.
| | | | | |
Collapse
|
14
|
Haouzi P, Chenuel B. Frequency of movements and respiratory control in exercise. Respir Physiol Neurobiol 2008; 161:219-20; author reply 221-2. [DOI: 10.1016/j.resp.2008.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
15
|
Noah JA, Boliek C, Lam T, Yang JF. Breathing Frequency Changes at the Onset of Stepping in Human Infants. J Neurophysiol 2008; 99:1224-34. [DOI: 10.1152/jn.00868.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breathing frequency increases at the onset of movement in a wide rage of mammals including adult humans. Moreover, the magnitude of increase in the rate of breathing appears related to the rate of the rhythmic movement. We determined whether human infants show the same type of response when supported to step on a treadmill. Twenty infants (ages 9.7 ± 1.2 mo) participated in trials consisting of sitting, stepping on the treadmill, followed by sitting again. Breathing frequency was recorded with a thermocouple, positioned under one naris and taped to a soother that the infant held in his/her mouth. A video camera, electrogoniometers, and force platforms under the treadmill belts recorded stepping movements. We found that the rate of breathing changed at the beginning of stepping. Most surprisingly, we found that when infants stepped at a frequency slower than their breathing frequency in sitting, the breathing frequency decreased. Average breathing frequency during stepping was positively correlated with stepping frequency. There was no evidence of entrainment between stepping and breathing. In conclusion, the rapid change in breathing frequency at the beginning of movement is functional in infants. The direction and magnitude of change in breathing is associated with the leg movements.
Collapse
|