1
|
Hansen RK, Nielsen PS, Schelske MW, Secher NH, Volianitis S. CO 2 supplementation dissociates cerebral oxygenation and middle cerebral artery blood velocity during maximal cycling. Scand J Med Sci Sports 2019; 30:399-407. [PMID: 31650627 DOI: 10.1111/sms.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
This study evaluated whether the reduction of prefrontal cortex oxygenation (ScO2 ) during maximal exercise depends on the hyperventilation-induced hypocapnic attenuation of middle cerebral artery blood velocity (MCA Vmean ). Twelve endurance-trained males (age: 25 ± 3 years, height: 183 ± 8 cm, weight: 75 ± 9 kg; mean ± SD) performed in three separate laboratory visits, a maximal oxygen uptake (VO2 max) test, an isocapnic (end-tidal CO2 tension (PetCO2 ) clamped at 40 ± 1 mmHg), and an ambient air controlled-pace constant load high-intensity ergometer cycling to exhaustion, while MCA Vmean (transcranial Doppler ultrasound) and ScO2 (near-infrared spectroscopy) were determined. Duration of exercise (12 min 25 s ± 1 min 18 s) was matched by performing the isocapnic trial first. Pulmonary VO2 was 90 ± 6% versus 93 ± 5% of the maximal value (P = .012) and PetCO2 40 ± 1 versus 34 ± 4 mmHg (P < .05) during the isocapnic and control trials, respectively. During the isocapnic trial MCA Vmean increased by 16 ± 13% until clamping was applied and continued to increase (by 14 ± 28%; P = .017) until the end of exercise, while there was no significant change during the control trial (P = .071). In contrast, ScO2 decreased similarly in both trials (-3.2 ± 5.1% and -4.1 ± 9.6%; P < .001, isocapnic and control, respectively) at exhaustion. The reduction in prefrontal cortex oxygenation during maximal exercise does not depend solely on lowered cerebral blood flow as indicated by middle cerebral blood velocity.
Collapse
Affiliation(s)
- Rasmus K Hansen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter S Nielsen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Markus W Schelske
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stefanos Volianitis
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
McKnight JC, Bennett KA, Bronkhorst M, Russell DJF, Balfour S, Milne R, Bivins M, Moss SEW, Colier W, Hall AJ, Thompson D. Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy. PLoS Biol 2019; 17:e3000306. [PMID: 31211787 PMCID: PMC6581238 DOI: 10.1371/journal.pbio.3000306] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 11/18/2022] Open
Abstract
Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of noninvasive technology for use in freely diving animals. Here, we developed a noninvasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment.
Collapse
Affiliation(s)
- J. Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
- * E-mail:
| | - Kimberley A. Bennett
- Division of Science, School of Science Engineering and Technology, Abertay University, Dundee, Scotland
| | | | - Debbie J. F. Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Ryan Milne
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Matt Bivins
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Simon E. W. Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | | | - Ailsa J. Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Dave Thompson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| |
Collapse
|
3
|
Olmo Arroyo J, Khirani S, Amaddeo A, Griffon L, De Sanctis L, Pouard P, Fauroux B. A comparison of pulse oximetry and cerebral oxygenation in children with severe sleep apnea-hypopnea syndrome: a pilot study. J Sleep Res 2017; 26:799-808. [DOI: 10.1111/jsr.12561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jorge Olmo Arroyo
- Pediatric Noninvasive Ventilation and Sleep Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
| | - Sonia Khirani
- Pediatric Noninvasive Ventilation and Sleep Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
- ASV Santé; Gennevilliers France
| | - Alessandro Amaddeo
- Pediatric Noninvasive Ventilation and Sleep Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
- Paris Descartes University; Paris France
- Research Unit INSERM U 955; Team 13; Créteil France
| | - Lucie Griffon
- Pediatric Noninvasive Ventilation and Sleep Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
| | - Livio De Sanctis
- Pediatric Noninvasive Ventilation and Sleep Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
| | - Philippe Pouard
- Pediatric Cardiac Intensive Care and Anaesthesia Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit; AP-HP; Hôpital Necker Enfants-Malades; Paris France
- Paris Descartes University; Paris France
- Research Unit INSERM U 955; Team 13; Créteil France
| |
Collapse
|
4
|
Wilson MH, Imray CHE. The cerebral venous system and hypoxia. J Appl Physiol (1985) 2015; 120:244-50. [PMID: 26294747 DOI: 10.1152/japplphysiol.00327.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/13/2015] [Indexed: 01/24/2023] Open
Abstract
Most hypobaric hypoxia studies have focused on oxygen delivery and therefore cerebral blood inflow. Few have studied venous outflow. However, the volume of blood entering and leaving the skull (∼700 ml/min) is considerably greater than cerebrospinal fluid production (0.35 ml/min) or edema formation rates and slight imbalances of in- and outflow have considerable effects on intracranial pressure. This dynamic phenomenon is not necessarily appreciated in the currently taught static "Monro-Kellie" doctrine, which forms the basis of the "Tight-Fit" hypothesis thought to underlie high altitude headache, acute mountain sickness, and high altitude cerebral edema. Investigating both sides of the cerebral circulation was an integral part of the 2007 Xtreme Everest Expedition. The results of the relevant studies performed as part of and subsequent to this expedition are reviewed here. The evidence from recent studies suggests a relative venous outflow insufficiency is an early step in the pathogenesis of high altitude headache. Translation of knowledge gained from high altitude studies is important. Many patients in a critical care environment develop hypoxemia akin to that of high altitude exposure. An inability to drain the hypoxemic induced increase in cerebral blood flow could be an underappreciated regulatory mechanism of intracranial pressure.
Collapse
Affiliation(s)
- Mark H Wilson
- The Centre for Altitude, Space and Extreme Environment Medicine, University College London, London, United Kingdom; The Birmingham Medical Research Expeditionary Society, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom; Imperial Neurotrauma Centre, Imperial College, St Mary's Hospital, London, United Kingdom; Institute of Pre-Hospital Care, London's Air Ambulance, Royal London Hospital, Whitechapel, United Kingdom; and
| | - Christopher H E Imray
- The Centre for Altitude, Space and Extreme Environment Medicine, University College London, London, United Kingdom; The Birmingham Medical Research Expeditionary Society, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom; Department of Surgery, Warwick Medical School, UHCW NHS Trust, Warwick, United Kingdom
| |
Collapse
|
5
|
Cerebral Hemodynamics at Altitude: Effects of Hyperventilation and Acclimatization on Cerebral Blood Flow and Oxygenation. Wilderness Environ Med 2015; 26:133-41. [DOI: 10.1016/j.wem.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/15/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
|
6
|
Hamilton AR, Beck KL, Kaulbach J, Kenny M, Basset FA, DiSanto MC, Behm DG. Breathing Techniques Affect Female but Not Male Hip Flexion Range of Motion. J Strength Cond Res 2015; 29:3197-205. [PMID: 25944455 DOI: 10.1519/jsc.0000000000000982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two protocols were undertaken to help clarify the effects of breathing techniques on hamstrings (hip flexion) range of motion (ROM). The protocols examined effects of breathing conditions on ROM and trunk muscle activity. Protocol 1: Thirty recreationally active participants (15 male, 15 female, 20-25 years) were monitored for changes in single-leg raise (SLR) ROM with 7 breathing conditions before or during a passive supine SLR stretch. Breathing conditions included prestretch inhale, prestretch exhale, inhale-during stretch, exhale-during stretch, neutral, hyperventilation, and hypoventilation before stretch. Protocol 2: Eighteen recreationally active participants (9 male, 9 female, 20-25 years) were monitored for electromyographic (EMG) activity of the rectus abdominus, external obliques, lower abdominal stabilizers, and lower erector spinae while performing the 7 breathing conditions before or during a passive SLR stretch. Control exhibited less ROM (p = 0.008) than the prestretch inhale (7.7%), inhale-during stretch (10.9%), and hypoventilation (11.2%) conditions with females. Protocol 3: Greater overall muscle activity in the prestretch exhale condition was found compared with inhale-during stretch (43.1%↓; p = 0.029) and hypoventilation (51.2%↓; p = 0.049) conditions. As the inhale-during stretch and hypoventilation conditions produced the lowest levels of muscle activity for both sexes and the highest ROM for the females, it can be assumed that both mechanical and neural factors affect female SLR ROM. Lesser male ROM might be attributed to anatomical differences such as greater joint stiffness. The breathing techniques may have affected intra-abdominal pressure, trunk muscle cocontractions, and sympathetic neural activity to enhance female ROM.
Collapse
Affiliation(s)
- Alan R Hamilton
- 1School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and 2Institute of Professional Physical Education, Cordoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
7
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rupp T, Jubeau M, Millet GY, Wuyam B, Levy P, Verges S, Perrey S. Muscle, Prefrontal, and Motor Cortex Oxygenation Profiles During Prolonged Fatiguing Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 789:149-155. [DOI: 10.1007/978-1-4614-7411-1_21] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Wilson MH, Imray CH, Hargens AR. The Headache of High Altitude and Microgravity—Similarities with Clinical Syndromes of Cerebral Venous Hypertension. High Alt Med Biol 2011; 12:379-86. [DOI: 10.1089/ham.2011.1026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Mark H. Wilson
- National Hospital for Neurology and Neurosurgery and University College London, London, United Kingdom
| | | | - Alan R. Hargens
- University of California San Diego Medical Center, San Diego, California
| |
Collapse
|
10
|
Rooks CR, Thom NJ, McCully KK, Dishman RK. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Prog Neurobiol 2010; 92:134-50. [DOI: 10.1016/j.pneurobio.2010.06.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/22/2010] [Accepted: 06/04/2010] [Indexed: 11/25/2022]
|
11
|
Olin JT, Dimmen AC, Subudhi AW, Roach RC. Cerebral blood flow and oxygenation at maximal exercise: the effect of clamping carbon dioxide. Respir Physiol Neurobiol 2010; 175:176-80. [PMID: 20884383 DOI: 10.1016/j.resp.2010.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/08/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
During exercise, as end-tidal carbon dioxide (P(ET)(CO₂)) drops after the respiratory compensation point (RCP), so does cerebral blood flow velocity (CBFv) and cerebral oxygenation. This low-flow, low-oxygenation state may limit work capacity. We hypothesized that by preventing the fall in P(ET)(CO₂) at peak work capacity (W(max)) with a newly designed high-flow, low-resistance rebreathing circuit, we would improve CBFv, cerebral oxygenation, and W(max). Ten cyclists performed two incremental exercise tests, one as control and one with P(ET)(CO₂) constant (clamped) after the RCP. We analyzed , middle cerebral artery CBFv, cerebral oxygenation, and cardiopulmonary measures. At W(max), when we clamped P(ET)(CO₂) (39.7 ± 5.2 mmHg vs. 29.6 ± 4.7 mmHg, P < 0.001), CBFv increased (92.6 ± 15.9 cm/s vs. 73.6 ± 12.5 cm/s, P < 0.001). However, cerebral oxygenation was unchanged (ΔTSI -21.3 ± 13.1% vs. -24.3 ± 8.1%, P = 0.33), and W(max) decreased (380.9 ± 20.4W vs. 405.7 ± 26.8 W, P < 0.001). At W(max), clamping P(ET)(CO₂) increases CBFv, but this does not appear to improve W(max).
Collapse
Affiliation(s)
- J Tod Olin
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-0508, USA.
| | | | | | | |
Collapse
|
12
|
Billaut F, Davis JM, Smith KJ, Marino FE, Noakes TD. Cerebral oxygenation decreases but does not impair performance during self-paced, strenuous exercise. Acta Physiol (Oxf) 2010; 198:477-86. [PMID: 19912150 DOI: 10.1111/j.1748-1716.2009.02058.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The reduction in cerebral oxygenation (Cox) is associated with the cessation of exercise during constant work rate and incremental tests to exhaustion. Yet in exercises of this nature, ecological validity is limited due to work rate being either fully or partly dictated by the protocol, and it is unknown whether cerebral deoxygenation also occurs during self-paced exercise. Here, we investigated the cerebral haemodynamics during a 5-km running time trial in trained runners. METHODS Rating of perceived exertion (RPE) and surface electromyogram (EMG) of lower limb muscles were recorded every 0.5 km. Changes in Cox (prefrontal lobe) were monitored via near-infrared spectroscopy through concentration changes in oxy- and deoxyhaemoglobin (Delta[O(2)Hb], Delta[HHb]). Changes in total Hb were calculated (Delta[THb] = Delta[O(2)Hb] + Delta[HHb]) and used as an index of change in regional blood volume. RESULTS During the trial, RPE increased from 6.6 +/- 0.6 to 19.1 +/- 0.7 indicating maximal exertion. Cox rose from baseline to 2.5 km ( upward arrowDelta[O(2)Hb], upward arrowDelta[HHb], upward arrowDelta[THb]), remained constant between 2.5 and 4.5 km, and fell from 4.5 to 5 km ( downward arrowDelta[O(2)Hb], upward arrowDelta[HHb], <-->Delta[THb]). Interestingly, the drop in Cox at the end of the trial coincided with a final end spurt in treadmill speed and concomitant increase in skeletal muscle recruitment (as revealed by higher lower limb EMG). CONCLUSION Results confirm the large tolerance for change in Cox during exercise at sea level, yet further indicate that, in conditions of self-selected work rate, cerebral deoxygenation remains within a range that does not hinder strenuous exercise performance.
Collapse
|
13
|
Sightings, edited by John W. Severinghaus. High Alt Med Biol 2009. [DOI: 10.1089/ham.2009.10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|