1
|
Maggioni MA, Castiglioni P, Merati G, Brauns K, Gunga HC, Mendt S, Opatz OS, Rundfeldt LC, Steinach M, Werner A, Stahn AC. High-Intensity Exercise Mitigates Cardiovascular Deconditioning During Long-Duration Bed Rest. Front Physiol 2018; 9:1553. [PMID: 30510516 PMCID: PMC6252355 DOI: 10.3389/fphys.2018.01553] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/16/2018] [Indexed: 02/02/2023] Open
Abstract
Head-down-tilt bed rest (HDT) mimics the changes in hemodynamics and autonomic cardiovascular control induced by weightlessness. However, the time course and reciprocal interplay of these adaptations, and the effective exercise protocol as a countermeasure need further clarification. The overarching aim of this work (as part of a European Space Agency sponsored long-term bed rest study) was therefore to evaluate the time course of cardiovascular hemodynamics and autonomic control during prolonged HDT and to assess whether high-intensity, short-duration exercise could mitigate these effects. A total of n = 23 healthy, young, male participants were randomly allocated to two groups: training (TRAIN, n = 12) and non-training (CTRL, n = 11) before undergoing a 60-day HDT. The TRAIN group underwent a resistance training protocol using reactive jumps (5–6 times per week), whereas the CTRL group did not perform countermeasures. Finger blood pressure (BP), heart rate (HR), and stroke volume were collected beat-by-beat for 10 min in both sitting and supine positions 7 days before HDT (BDC−7) and 10 days after HDT (R+10), as well as on the 2nd (HDT2), 28th (HDT28), and 56th (HDT56) day of HDT. We investigated (1) the isolated effects of long-term HDT by comparing all the supine positions (including BDC−7 and R+10 at 0 degrees), and (2) the reactivity of the autonomic response before and after long-term HDT using a specific postural stimulus (i.e., supine vs. sitting). Two-factorial linear mixed models were used to assess the time course of HDT and the effect of the countermeasure. Starting from HDT28 onwards, HR increased (p < 0.02) and parasympathetic tone decreased exclusively in the CTRL group (p < 0.0001). Moreover, after 60-day HDT, CTRL participants showed significant impairments in increasing cardiac sympathovagal balance and controlling BP levels during postural shift (supine to sitting), whereas TRAIN participants did not. Results show that a 10-day recovery did not compensate for the cardiovascular and autonomic deconditioning following 60-day HDT. This has to be considered when designing rehabilitation programs—not only for astronauts but also in general public healthcare. High-intensity, short-duration exercise training effectively minimized these impairments and should therefore deserve consideration as a cardiovascular deconditioning countermeasure for spaceflight.
Collapse
Affiliation(s)
- Martina A Maggioni
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | | | - Giampiero Merati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Katharina Brauns
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Stefan Mendt
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Oliver S Opatz
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Lea C Rundfeldt
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Mathias Steinach
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Anika Werner
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Université de Normandie, INSERM U 1075 COMETE, Caen, France
| | - Alexander C Stahn
- Charité-Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Andreev-Andrievskiy AA, Popova AS, Lagereva EA, Vinogradova OL. Fluid shift versus body size: changes of hematological parameters and body fluid volume in hindlimb-unloaded mice, rats and rabbits. ACTA ACUST UNITED AC 2018; 221:jeb.182832. [PMID: 29950449 DOI: 10.1242/jeb.182832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023]
Abstract
The cardiovascular system is adapted to gravity, and reactions to the loss of gravity in space are presumably dependent on body size. The dependence of hematological parameters and body fluid volume on simulated microgravity have never been studied as an allometric function before. Thus, we estimated red blood cell (RBC), blood and extracellular fluid volume in hindlimb-unloaded (HLU) or control (attached) mice, rats and rabbits. RBC decrease was found to be size independent, and the allometric dependency for RBC loss in HLU and control animals shared a common power (-0.054±0.008) but a different Y0 coefficient (8.66±0.40 and 10.73±0.49, respectively, P<0.05). Blood volume in HLU animals was unchanged compared with that of controls, disregarding body size. The allometric dependency of interstitial fluid volume in HLU and control mice shared Y0 (1.02±0.09) but had different powers N (0.708±0.017 and 0.648±0.016, respectively, P<0.05), indicating that the interstitial fluid volume increase during hindlimb unloading is more pronounced in larger animals. Our data underscore the importance of size-independent mechanisms of cardiovascular adaptation to weightlessness. Despite the fact that the use of mice hampers application of a straightforward translational approach, this species is useful for gravitational biology as a tool to investigate size-independent mechanisms of mammalian adaptation to microgravity.
Collapse
Affiliation(s)
- Alexander A Andreev-Andrievskiy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia .,M.V. Lomonosov Moscow State University, Biology Faculty, Moscow 119991, Russia
| | - Anfisa S Popova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia.,M.V. Lomonosov Moscow State University, Biology Faculty, Moscow 119991, Russia
| | - Evgeniia A Lagereva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia
| | - Olga L Vinogradova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia
| |
Collapse
|
3
|
Koschate J, Thieschäfer L, Drescher U, Hoffmann U. Impact of 60 days of 6° head down tilt bed rest on muscular oxygen uptake and heart rate kinetics: efficacy of a reactive sledge jump countermeasure. Eur J Appl Physiol 2018; 118:1885-1901. [PMID: 29946969 DOI: 10.1007/s00421-018-3915-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE The effects of 60 days of head down tilt bed rest (HDBR) with and without the application of a reactive jump countermeasure were investigated, using a method which enables to discriminate between pulmonary ([Formula: see text]O2pulm) and muscular ([Formula: see text]O2musc) oxygen uptake kinetics to control for hemodynamic influences. METHODS 22 subjects were randomly allocated to either a group performing a reactive jumps countermeasure (JUMP; n = 11, male, 29 ± 7 years, 23.9 ± 1.3 kg m- 2) or a control group (CTRL; n = 11, male, 29 ± 6 years, 23.3 ± 2.0 kg m- 2). Heart rate (HR) and [Formula: see text]O2pulm were measured in response to repeated changes in work rate between 30 and 80 W before (BDC-9) and two times after HDBR (R+ 2, R+ 13). Kinetic responses of HR, [Formula: see text]O2pulm, and [Formula: see text]O2musc were assessed applying time series analysis. Higher maxima in cross-correlation functions (CCFmax(x)) between work rate and the respective parameter indicate faster kinetics responses. Statistical analysis was performed applying multifactorial analysis of variance. RESULTS CCFmax([Formula: see text]O2musc) and CCFmax([Formula: see text]O2pulm) were not significantly different before and after HDBR (P > 0.05). CCFmax(HR) decreased following bed rest (JUMP: BDC-9: 0.30 ± 0.09 vs. R+ 2: 0.28 ± 0.06 vs. R+13: 0.28 ± 0.07; CTRL: 0.35 ± 0.09 vs. 0.27 ± 0.06 vs. 0.33 ± 0.07 P = 0.025). No significant differences between the groups were observed (P > 0.05). Significant alterations were found for CCFmax of mean arterial blood pressure (mBP) after HDBR (JUMP: BDC-9: 0.21 ± 0.07 vs. R+ 2: 0.30 ± 0.13 vs. R+ 13: 0.28 ± 0.08; CTRL: 0.25 ± 0.07 vs. 0.38 ± 0.13 vs. 0.28 ± 0.08; P = 0.008). CONCLUSIONS Despite hemodynamic changes, [Formula: see text]O2 kinetics seem to be preserved for a longer period of HDBR, even without the application of a countermeasure.
Collapse
Affiliation(s)
- J Koschate
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.
| | - L Thieschäfer
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - U Drescher
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| | - U Hoffmann
- Institute of Physiology and Anatomy, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
4
|
Andreev-Andrievskiy A, Popova A, Lloret JC, Aubry P, Borovik A, Tsvirkun D, Vinogradova O, Ilyin E, Gauquelin-Koch G, Gharib C, Custaud MA. BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:19-26. [PMID: 28554506 DOI: 10.1016/j.lssr.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings.
Collapse
Affiliation(s)
- Alexander Andreev-Andrievskiy
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia; Lomonosov Moscow State University, Biology Faculty, 1-12, Leninskie Gory, 119234, Moscow, Russia.
| | - Anfisa Popova
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia; Lomonosov Moscow State University, Biology Faculty, 1-12, Leninskie Gory, 119234, Moscow, Russia
| | | | - Patrick Aubry
- CNES, French Space Agency, 8 av Edouard Belin, 31401, Toulouse, France
| | - Anatoliy Borovik
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia
| | - Daria Tsvirkun
- Laboratory of Integrated Neurovascular and Mitochondrial Biology (BNMI), UMR CNRS 6214, INSERM 1083, Faculté de Médecine d'Angers, 49045 Angers, France; CaDyWEC International Laboratory, Angers University, Angers, France
| | - Olga Vinogradova
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia
| | - Eugeniy Ilyin
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia
| | | | - Claude Gharib
- Laboratory of Physiology, Medical School Lyon Est, 8, Avenue Rockfeller, 69373, Lyon, France
| | - Marc-Antoine Custaud
- Laboratory of Integrated Neurovascular and Mitochondrial Biology (BNMI), UMR CNRS 6214, INSERM 1083, Faculté de Médecine d'Angers, 49045 Angers, France; CaDyWEC International Laboratory, Angers University, Angers, France.
| |
Collapse
|
5
|
Influence of the metaboreflex on arterial blood pressure in heart failure patients. Am Heart J 2014; 167:521-8. [PMID: 24655701 DOI: 10.1016/j.ahj.2013.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/08/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Feedback from active locomotor muscles contributes to the exercise pressor response in healthy humans, and is thought to be more prominent in heart failure (HF). The purpose of this study was to examine the influence of metaboreflex stimulation on arterial pressure in HF. METHODS Eleven HF patients (51 ± 5 years, New York Heart Association Class I/II, left ventricular ejection fraction 32 ± 3%) and 11 controls (42 ± 3 years) were recruited. Participants completed two exercise sessions on separate days: (1) symptom limited graded exercise test; and (2) constant work rate cycling (60% peak oxygen consumption,V˙O2) for 4 minutes with 2 minutes passive recovery. Recovery was randomized to normal or locomotor muscle regional circulatory occlusion (RCO). Mean arterial pressure (MAP), systolic pressure (SBP), diastolic pressure, heart rate (HR) and V˙O2 were measured at rest, end-exercise and recovery. O2 pulse (V˙O2/HR) and the rate pressure product (RPP = HR × SBP) were calculated. RESULTS In response to RCO, mean arterial pressure and SBP increased in HF compared with CTLs (6.8 ± 5.8% vs -3.0 ± 7.8%, P < .01 and 3.4 ± 6.4% vs -12.7 ± 10.4%, P < .01, respectively), with no difference in diastolic pressure (P = .61). HF patients had a smaller reduction in HR and RPP, but also displayed a larger decrease in O2 pulse consequent to locomotor metaboreflex stimulation (P < .05, for all). CONCLUSION RCO resulted in a markedly increased pressor response in HF relative to controls, due primarily to an increase of SBP and attenuated cardiac recovery as noted by the persistent elevation in HR.
Collapse
|
6
|
Affiliation(s)
- Daniela Lucini
- Centro di ricerca Terapia Neurovegetativa e Medicina dell'esercizio, Dipartimento Scienze Cliniche, Università degli Studi di Milano, Italy.
| | | |
Collapse
|