1
|
Ba MA, Aiyuk A, Hernández K, Evasovic JM, Wuebbles RD, Burkin DJ, Singer CA. Transgenic overexpression of α7 integrin in smooth muscle attenuates allergen-induced airway inflammation in a murine model of asthma. FASEB Bioadv 2022; 4:724-740. [PMID: 36349295 PMCID: PMC9635010 DOI: 10.1096/fba.2022-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is a chronic inflammatory disorder of the lower airways characterized by modulation of airway smooth muscle (ASM) function. Infiltration of smooth muscle by inflammatory mediators is partially regulated by transmembrane integrins and the major smooth muscle laminin receptor α7β1 integrin plays a critical role in the maintenance of ASM phenotype. The goal of the current study was to investigate the role of α7 integrin in asthma using smooth muscle-specific α7 integrin transgenic mice (TgSM-Itgα7) using both acute and chronic OVA sensitization and challenge protocols that mimic mild to severe asthmatic phenotypes. Transgenic over-expression of the α7 integrin in smooth muscle resulted in a significant decrease in airway resistance relative to controls, reduced the total number of inflammatory cells and substantially inhibited the production of crucial Th2 and Th17 cytokines in airways. This was accompanied by decreased secretion of various inflammatory chemokines such as eotaxin/CCL11, KC/CXCL3, MCP-1/CCL2, and MIP-1β/CCL4. Additionally, α7 integrin overexpression significantly decreased ERK1/2 phosphorylation in the lungs of TgSM-Itgα7 mice and affected proliferative, contractile, and inflammatory downstream effectors of ERK1/2 that drive smooth muscle phenotype in the lung. Taken together, these results support the hypothesis that enhanced expression of α7 integrin in vivo inhibits allergic inflammation and airway resistance. Moreover, we identify ERK1/2 as a potential target by which α7 integrin signals to regulate airway inflammation. We conclude that identification of therapeutics targeting an increase in smooth muscle α7 integrin expression could serve as a potential novel treatment for asthma.
Collapse
Affiliation(s)
- Mariam A. Ba
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Annemarie Aiyuk
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Karla Hernández
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Jon M. Evasovic
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Ryan D. Wuebbles
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Dean J. Burkin
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| | - Cherie A. Singer
- Department of PharmacologyUniversity of Nevada School of MedicineRenoNevadaUSA
| |
Collapse
|
2
|
Zhao X, Yu Z, Lv Z, Meng L, Xu J, Yuan S, Fu Z. Activation of Alpha-7 Nicotinic Acetylcholine Receptors (α7nAchR) Promotes the Protective Autophagy in LPS-Induced Acute Lung Injury (ALI) In Vitro and In Vivo. Inflammation 2020; 42:2236-2245. [PMID: 31522340 DOI: 10.1007/s10753-019-01088-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of inflammatory cytokines and chemokines and autophagy has been reported to be involved in the pathogenic mechanism of acute lung injury (ALI). Reportedly, alpha-7 nicotinic acetylcholine receptors (α7nAchR) might play a protective role in LPS-induced ALI. In the current research, we established LPS-induced ALI model in mice and α7nAchR agonist PNU-282987 improved LPS-induced injury. In MH-S cells, LPS stimulation inhibited, whereas α7nAchR agonist PNU-282987 enhanced the autophagy. α7nAchR agonist PNU-282987 protected MH-S cells from LPS-induced inflammation by reducing the concentrations of IL-6, TNF-α, and IL-1β. Finally, LPS stimulation dramatically inhibited MH-S cell viability but enhanced cell apoptosis, whereas PNU-282987 treatment exerted opposite effects; α7nAchR might regulate the cellular homeostasis via affecting the crosstalk between the autophagy and apoptosis in MH-S cells; in other words, α7nAChR agonist enhances MH-S cell autophagy and inhibits MH-S cell apoptosis. In conclusion, α7nAchR promote the protective autophagy in LPS-induced ALI model in mice and MH-S cells. The application of α7nAchR agonist is considered a potent target for LPS-induced ALI, which needs further clinical investigation.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China. .,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Wang W, An G, Li Y, Corrigan CJ, Wang W, Ying S, Huang K. Similarities and differences in the effects of sensitisation and challenge with Dermatophagoides farinae and Dermatophagoides pteronyssinus extracts in a murine asthma surrogate. Cell Immunol 2020; 348:104038. [PMID: 31952799 DOI: 10.1016/j.cellimm.2020.104038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Patients with atopic asthma may become sensitised to the grain storage mite Dermatophagoides farinae (Der f), the house dust mite Dermatophagoides pteronyssinus (Der p) or both, but thus far little attention has been paid to date to possible variation in their pathophysiological effects. Here we present a side by side comparison of the effects of extracts of these two dust mites in a murine surrogate of atopic asthma. Compared with the Der p-challenged mice, however, the mice-challenged with Der f had favour changes in lung tissue elasticity and expression in matrix metalloproteinases in lung tissue, while the mice challenged with Der p showed more neutrophils infiltrating around the airway and stronger expression of steroid-resistant related cytokines in the lung tissue. Our data suggest that different dust mite crude extracts might lead different pathological characteristics, at least in murine models of asthma.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China.
| |
Collapse
|
4
|
Qiu C, Li J, Zhang J, He Q, Wang L, Weng X, Guan M. Modulation of the airway smooth muscle phenotype in a murine asthma model and effects of nuclear factor-κB inhibition. J Asthma 2019; 56:1247-1256. [PMID: 30634869 DOI: 10.1080/02770903.2018.1539498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objective: Phenotype modulation of airway smooth muscle (ASM) is a unique characteristic of asthma and is considered to regulate airway remodeling, airway hyperresponsiveness (AHR) and inflammation. The nuclear factor-κB (NF-κB) signaling pathway plays a crucial role in phenotypic modulation. Thus, models of acute and chronic asthma were established and pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor was delivered by intraperitoneal injection. Methods: The Penh value was measured using the BUXCO WBP system. Lung tissues were subjected to histologic analysis. Phenotypic markers of ASM and COL1A1 mRNA levels were measured by RT-PCR. Expression levels of phosphorylated p65 (pP65) and α-SMA were detected by Western blot. Serum cytokine levels were quantified by RayBiotech ELISA array. Results: PDTC intervention decreased the Penh values in both the acute and chronic models. The ASM area and the airway collagen area were decreased in the PDTC intervention group. A decrease in phenotypic markers were detected in both the acute and chronic models in time-dependent manner, and PDTC intervention partially reversed the phenotypic modulation. The effect of PDTC intervention on systemic inflammation was also verified. Conclusion: These results revealed the existence of a dynamic ASM phenotype modulation procedure in asthma development and that targeting NF-κB by PDTC was effective to mitigate ASM phenotype modulation and major asthmatic pathological features.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Respiratory Diseases, Second Clinical medical college (Shenzhen People's Hospital), Jinan University , Shenzhen , China
| | - Jie Li
- Department of Respiratory Diseases, Second Clinical medical college (Shenzhen People's Hospital), Jinan University , Shenzhen , China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University , Guangzhou , China
| | - Jian Zhang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Qi He
- Department of Respiratory Diseases, Second Clinical medical college (Shenzhen People's Hospital), Jinan University , Shenzhen , China
| | - Lingwei Wang
- Department of Respiratory Diseases, Second Clinical medical college (Shenzhen People's Hospital), Jinan University , Shenzhen , China
| | - Xuanwen Weng
- Department of Respiratory Diseases, Second Clinical medical college (Shenzhen People's Hospital), Jinan University , Shenzhen , China
| | - Minjie Guan
- Department of Respiratory Diseases, Second Clinical medical college (Shenzhen People's Hospital), Jinan University , Shenzhen , China
| |
Collapse
|
5
|
Zoltowska AM, Lei Y, Fuchs B, Rask C, Adner M, Nilsson GP. The interleukin-33 receptor ST2 is important for the development of peripheral airway hyperresponsiveness and inflammation in a house dust mite mouse model of asthma. Clin Exp Allergy 2016; 46:479-90. [PMID: 26609909 DOI: 10.1111/cea.12683] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several clinical and experimental studies have implicated IL-33 and its receptor ST2 in the development of asthma. However, the effect of IL-33/ST2 signalling on airway responses and inflammation in allergic asthma is not well established. OBJECTIVE To investigate the role of IL-33/ST2 signalling in promoting allergen-induced airway hyperresponsiveness (AHR), airway inflammation, antigen-specific IgE production and mast cell activity in a mouse model of asthma. METHODS ST2-deficient (ST2(-/-)) mice and control BALB/c mice were given house dust mite (HDM) extract over a 6-week period. Forty-eight hours after the final HDM administration, lung function and airway inflammation were evaluated. Airway responsiveness was determined in the central airways and peripheral lung. Cellular infiltration and mast cell protease mMCP-1 levels were quantified in bronchoalveolar lavage fluid (BALF). Recruitment of inflammatory cells and inflammatory cytokine profiles were assessed in pulmonary tissue, and HDM-specific IgE was measured in serum. RESULTS ST2 deficiency diminished HDM-induced AHR in the peripheral lung, while AHR in the central airways was unaffected. Inflammatory responses to HDM were also reduced in ST2(-/-) mice as reflected by the lower induction of HDM-specific serum IgE, inhibition of HDM-induced eosinophilia and reduced macrophage count in BALF, and a diminished influx of inflammatory cells and reduced goblet cell hyperplasia around the peripheral airways. Furthermore, the levels of the inflammatory cytokines IL-1β, IL-5, IL-13, IL-33, GM-CSF, thymic stromal lymphopoietin and mast cell protease mMCP-1 were reduced in HDM-treated ST2(-/-) mice compared with wild-type controls. CONCLUSIONS In addition to promoting Th2 inflammation, we now suggest a role for the IL-33/ST2 pathway for the induction of peripheral inflammation and mucus production that causes AHR in the peripheral lung. This mechanism for inducing AHR at distal parts of the lung may be of specific importance as asthma is considered as a small airway disease.
Collapse
Affiliation(s)
- A M Zoltowska
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Y Lei
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - B Fuchs
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Rask
- ALK-Abelló, Hoersholm, Denmark
| | - M Adner
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - G P Nilsson
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Shamshuddin NSS, Mohd Zohdi R. Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma. J Tradit Complement Med 2016; 8:39-45. [PMID: 29321987 PMCID: PMC5755958 DOI: 10.1016/j.jtcme.2016.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disorder of the pulmonary airways. Gelam honey has been proven to possess anti-inflammatory property with great potential to treat an inflammatory condition. However, the effect of ingestion of Gelam honey on allergic asthma has never been studied. This study aimed to investigate the efficacy of Gelam honey on the histopathological changes in the lungs of a mice model of allergic asthma. Forty-two Balb/c mice were divided into seven groups: control, I, II, III, IV, V and VI group. All groups except the control were sensitized and challenged with ovalbumin. Mice in groups I, II, III, IV, and V were given honey at a dose of 10% (v/v), 40% (v/v) and 80% (v/v), dexamethasone 3 mg/kg, and phosphate buffered saline (vehicle) respectively, orally once a day for 5 days of the challenged period. Mice were sacrificed 24 h after the last OVA challenged and the lungs were evaluated for histopathological changes by light microscopy. All histopathological parameters such as epithelium thickness, the number of mast cell and mucus expression in Group III significantly improved when compared to Group VI except for subepithelial smooth muscle thickness (p < 0.05). In comparing Group III and IV, all the improvements in histopathological parameters were similar. Also, Gelam honey showed a significant (p < 0.05) reduction in inflammatory cell infiltration and beta-hexosaminidase level in bronchoalveolar lavage fluid. In conclusion, we demonstrated that administration of high concentration of Gelam honey alleviates the histopathological changes of mice model of allergic asthma.
Collapse
Affiliation(s)
| | - Rozaini Mohd Zohdi
- Faculty of Pharmacy, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
7
|
Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-κB pathway. Chin J Nat Med 2016; 13:889-95. [PMID: 26721707 DOI: 10.1016/s1875-5364(15)30094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated anti-inflammatory effects of Sangxingtang (SXT) on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was performed. The degree of lung edema was evaluated by measuring the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were assayed by the enzyme-linked immunosorbent assay methods. Pathological changes of lung tissues were observed by Hematoxylin and eosin (HE) staining. The inflammatory signaling pathway-related proteins nuclear factor mitogen activated protein kinases (P38MAPK), extracellular regulated protein kinases (Erk), c-Jun N-terminal kinase (Jnk) and nuclear transcription factor (NF-κB) p65 expressions were measured by Western blotting. Our results showed that the treatment with the SXT markedly attenuated the inflammatory cell numbers in the BALF, decreased the levels of P-P38MAPK, P-Erk, P-Jnk and P-NF-κB p65 and the total protein levels in lungs, improved the SOD activity and inhibited the MPO activity. Histological studies demonstrated that SXT substantially reduced the LPS-induced neutrophils in lung tissues, compared with the untreated LPS group. In conclusion, our results indicated that SXT had protective effects on LPS-induced ALI in mice.
Collapse
|
8
|
Abstract
The present study aimed to determine the protective effects and the underlying mechanisms of astragalin (AG) on ovalbumin (OVA)-induced allergic inflammation in a mouse model of allergic asthma. Our study demonstrated that AG inhibited OVA-induced increases in eosinophil count; IL-4, IL-5, IL-13, and IgE were recovered in bronchoalveolar lavage fluid, and increased IFN-γ level in bronchoalveolar lavage fluid. Histological studies demonstrated that AG substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot analysis demonstrated that AG treatments markedly inhibited OVA-induced SOCS-3 expression and enhancement of SOCS-5 expression in an asthma model. Our findings support the possible use of AG as a therapeutic drug for patients with allergic asthma.
Collapse
|
9
|
Anti-Asthmatic Effects of Ginsenoside Rb1 in a Mouse Model of Allergic Asthma Through Relegating Th1/Th2. Inflammation 2016; 38:1814-22. [PMID: 25832478 DOI: 10.1007/s10753-015-0159-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the study was to investigate the anti-asthma effects of ginsenoside Rb1 (Rb1) and its possible mechanisms. A total of 50 mice were randomly assigned to five experimental groups: control, model, dexamethasone (2 mg/kg), and Rb1 (10 and 20 mg/kg). Airway resistance (RI) was measured; histological studies were evaluated by the hematoxylin and eosin (HE) staining; Th1/Th2, ovalbumin (OVA)-specific serum, and bronchoalveolar lavage fluid (BALF) IgE levels were evaluated enzyme-linked immunosorbent assay (ELISA); and T-bet/GATA3 proteins were evaluated by Western blot. Our study demonstrated that Rb1 inhibited OVA-induced increases in RI and eosinophil counts; interleukin (IL)-4 was recovered, and IFN-γlevel increased in bronchoalveolar lavage fluid. Histological studies demonstrated that Rb1 substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot studies demonstrated that Rb1 substantially inhibited GATA3 and increased T-bet. These findings suggest that Rb1 may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.
Collapse
|
10
|
Shaifta Y, Irechukwu N, Prieto-Lloret J, MacKay CE, Marchon KA, Ward JPT, Knock GA. Divergent modulation of Rho-kinase and Ca(2+) influx pathways by Src family kinases and focal adhesion kinase in airway smooth muscle. Br J Pharmacol 2015; 172:5265-80. [PMID: 26294392 PMCID: PMC4864488 DOI: 10.1111/bph.13313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/02/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nneka Irechukwu
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jesus Prieto-Lloret
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Charles E MacKay
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Keisha A Marchon
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
11
|
Wang J, Liu YT, Xiao L, Zhu L, Wang Q, Yan T. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 2015; 37:2085-90. [PMID: 24958013 DOI: 10.1007/s10753-014-9942-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of apigenin lipopolysaccharide (LPS)-induced inflammatory in acute lung injury. In this study, the anti-inflammatory effects of apigenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible mechanisms involved in this protection were investigated. Pretreatment with apigenin prior to the administration of intratracheal LPS significantly induced a decrease in lung wet weight/dry weight ratio in total leukocyte number and neutrophil percent in the bronchoalveolar lavage fluid (BALF) and in IL-6 and IL-1β, the tumor neurosis factor-α (TNF-α) in the BALF. These results showed that anti-inflammatory effects of apigenin against the LPS-induced ALI may be due to its ability of primary inhibition of cyclooxygenase-2 (COX-2) gene expression and nuclear factor kB (NF-kB) gene expression of lung. The results presented here suggest that the protective mechanism of apigenin may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of COX-2 and NF-kB activation. The results support that use of apigenin is beneficial in the treatment of ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, China
| | | | | | | | | | | |
Collapse
|
12
|
Ma CH, Liu JP, Qu R, Ma SP. Tectorigenin inhibits the inflammation of LPS-induced acute lung injury in mice. Chin J Nat Med 2015; 12:841-6. [PMID: 25480515 DOI: 10.1016/s1875-5364(14)60126-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 01/09/2023]
Abstract
AIM In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model were investigated METHOD The cell-count in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed using SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were assayed using an enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed through HE staining. The inflammatory signal pathway related protein nuclear factor NF-κB p65 mRNA expression was measured by real-time PCR, and the protein level of NF-κB p65 was measured using Western blotting analysis. RESULTS The data showed that treatment with the tectorigenin markedly attenuated the inflammatory cell numbers in the BALF, decreased nuclear factor NF-κB p65 mRNA level and protein level in the lungs, and improved SOD activity and inhibited MPO activity. Histological studies showed that tectorigenin substantially inhibited LPS-induced neutrophils in lung tissue compared with the model group. CONCLUSION The results indicated that tectorigenin had a protective effect on LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China; Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rong Qu
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Pilecki B, Schlosser A, Wulf-Johansson H, Trian T, Moeller JB, Marcussen N, Aguilar-Pimentel JA, de Angelis MH, Vestbo J, Berger P, Holmskov U, Sorensen GL. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma. Thorax 2015; 70:862-72. [PMID: 26038533 DOI: 10.1136/thoraxjnl-2014-206609] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recently, several proteins of the extracellular matrix have been characterised as active contributors to allergic airway disease. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein abundant in the lung, whose biological functions remain poorly understood. In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation and CCL11 release dependent on phosphatidyloinositol-3-kinase but not extracellular signal-regulated kinase pathway. CONCLUSIONS MFAP4 promoted the development of asthmatic airway disease in vivo and pro-asthmatic functions of bronchial smooth muscle cells in vitro. Collectively, our results identify MFAP4 as a novel contributor to experimental asthma, acting through modulation of airway smooth muscle cells.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Trian
- Department of Pharmacology, Bordeaux University, Cardio-thoracic Research Centre, U1045, Bordeaux, France
| | - Jesper B Moeller
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Juan A Aguilar-Pimentel
- German Research Center for Environmental Health, German Mouse Clinic and Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany Department of Dermatology and Allergology am Biederstein, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Martin Hrabe de Angelis
- German Research Center for Environmental Health, German Mouse Clinic and Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technical University Munich, Freising-Weihenstephan, Germany
| | - Jorgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark Manchester Academic Health Science Centre, University Hospital South Manchester NHS Foundation Trust, Manchester, UK
| | - Patrick Berger
- Department of Pharmacology, Bordeaux University, Cardio-thoracic Research Centre, U1045, Bordeaux, France Department of Lung Function Testing, Department of Thoracic Chirurgy, Department of Anatomy and Pathology, CHU Bordeaux Teaching Hospital, Pessac, France
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Borges MC, Narayanan V, Iozzo RV, Ludwig MS. Deficiency of decorin induces expression of Foxp3 in CD4⁺CD25⁺ T cells in a murine model of allergic asthma. Respirology 2015; 20:904-11. [PMID: 25712878 DOI: 10.1111/resp.12485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Decorin (Dcn), an extracellular matrix proteoglycan, has several important biological functions, and its deposition is altered in the airway wall of humans with asthma and animal models of asthma. Due to its high affinity for transforming growth factor beta (TGF)-β, Dcn can function as part of a negative feedback mechanism, resulting in the regulation of this factor's bioavailability. Dcn deficient (Dcn(-/-) ) mice develop reduced airway inflammation, hyperresponsiveness and remodeling in response to repeated allergen challenge; we investigated whether regulatory T cells play a role in the diminished airway response of Dcn(-/-) mice. METHODS Dcn(-/-) and Dcn(+/+) mice (C57Bl/6) were sensitized with ovalbumin (OVA) and challenged intra-nasally 3 days/week × 3 weeks. After allergen challenge, bronchoalveolar lavage was collected to quantify total and differential cell counts and cytokine levels. Inflammatory cell number and cytokine messenger ribonucleic acid (mRNA) production were assessed in lung tissues. Cells from lung and spleen were extracted to evaluate regulatory T cells. RESULTS Tissue inflammation and interleukin (IL)-13 mRNA expression were significantly increased in OVA-challenged Dcn(+/+) mice, only. The increased expression of Foxp3 in CD4(+) CD25(+) T cells found in lung of OVA-challenged Dcn(-/-) mice was accompanied by an increase in IL-10 mRNA. CONCLUSIONS Our data demonstrated that a diminished lung inflammation in OVA challenged Dcn(-/-) mice was accompanied by a higher expression of regulatory T cells and IL-10 mRNA levels. These results reinforce the importance of Dcn in biological processes, particularly in an allergic model of asthma.
Collapse
Affiliation(s)
- Marcos C Borges
- Meakins-Christie Laboratories, McGill University Health Center, Montreal, Quebec, Canada.,Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Venkatesan Narayanan
- Meakins-Christie Laboratories, McGill University Health Center, Montreal, Quebec, Canada
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mara S Ludwig
- Meakins-Christie Laboratories, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Chen SM, Tsai YS, Lee SW, Liu YH, Liao SK, Chang WW, Tsai PJ. Astragalus membranaceus modulates Th1/2 immune balance and activates PPARγ in a murine asthma model. Biochem Cell Biol 2014; 92:397-405. [PMID: 25264079 DOI: 10.1139/bcb-2014-0008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Astragalus membranaceus, a traditional Chinese herb, has been used to improve airway inflammation and asthma. The present study investigated whether A. membranaceus has immunotherapeutic effects on asthma, a chronic inflammatory mucosal disease that is associated with excess production of IgE, eosinophilia, T helper 2 (Th2) cytokines, and bronchial hyperresponsiveness. An ovalbumin (OVA)-induced, chronic inflammatory airway murine asthma model was used to examine the status of pulmonary inflammation after the administration of A. membranaceus. The IgE levels in serum and bronchoalveolar lavage fluid showed a tendency to decrease after the administration of A. membranaceus. The number of eosinophils decreased and infiltration of inflammatory cells and collagen deposition declined in lung sections after A. membranaceus administration. The RNA and protein levels of Th2 cytokines and the ratio of the GATA3/T-bet mRNA levels decreased after A. membranaceus treatment. Furthermore, the mRNA level of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor, increased in the lung tissues of A. membranaceus-treated mice. Finally, an A. membranaceus water extract activated PPARγ activity in either human embryonic kidney 293 (HEK293) or A549 cells in a PPARγ-responsive element-containing luciferase reporter assay. These results indicate that A. membranaceus has an inhibitory effect on airway inflammation in a murine model of asthma through modulating the imbalanced relationship between Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Shih-Ming Chen
- a Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
17
|
Borges MC, Marchica CL, Narayanan V, Ludwig MS. Allergen challenge during halothane compared to isoflurane anesthesia induces a more potent peripheral lung response. Respir Physiol Neurobiol 2013; 189:144-52. [PMID: 23876740 DOI: 10.1016/j.resp.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/27/2022]
Abstract
Allergen instillation in anaesthetized vs. awake animals results in increased distribution of allergen in the lung. Halothane is a more potent bronchodilator of the small airways than isoflurane. As small airways contribute to asthma pathogenesis, we questioned whether intranasal challenge under halothane vs. isoflurane anesthesia would lead to an increase in allergen deposition in the lung periphery and, consequently, an enhanced allergic response. C57Bl/6 mice were sensitized twice and repeatedly challenged with ovalbumin (OA) under halothane or isoflurane anesthesia. After OA-challenge, in vivo lung function was measured and BAL performed. Peribronchial and peripheral inflammation, cytokine mRNA production and collagen deposition were assessed. Airway hyperresponsiveness, BAL eosinophilia, peripheral lung inflammation, IL-5 mRNA production and collagen deposition were significantly increased in halothane OA-challenged compared to isoflurane OA-challenged mice. Airway challenge induced a higher level of airway hyperresponsiveness, inflammation and remodeling under halothane than isoflurane anesthesia in a murine model of asthma. These differences may be due to increased allergen deposition in the small airways.
Collapse
Affiliation(s)
- Marcos C Borges
- Department of Internal Medicine, University of Sao Paulo Medical School at Ribeirao Preto, SP, Brazil.
| | | | | | | |
Collapse
|
18
|
Nastase MV, Young MF, Schaefer L. Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 2012; 60:963-75. [PMID: 22821552 PMCID: PMC3527886 DOI: 10.1369/0022155412456380] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Research over the past few years has provided fascinating results indicating that biglycan, besides being a ubiquitous structural component of the extracellular matrix (ECM), may act as a signaling molecule. Proteolytically released from the ECM, biglycan acts as a danger signal signifying tissue stress or injury. As a ligand of innate immunity receptors and activator of the inflammasome, biglycan stimulates multifunctional proinflammatory signaling linking the innate to the adaptive immune response. By clustering several types of receptors on the cell surface and orchestrating their downstream signaling events, biglycan is capable to autonomously trigger sterile inflammation and to potentiate the inflammatory response to microbial invasion. Besides operating in a broad biological context, biglycan also displays tissue-specific affinities to certain receptors and structural components, thereby playing a crucial role in bone formation, muscle integrity, and synapse stability at the neuromuscular junction. This review attempts to provide a concise summary of recent data regarding the involvement of biglycan in the regulation of inflammation and the musculoskeletal system, pointing out both a signaling and a structural role for this proteoglycan. The potential of biglycan as a novel therapeutic target or agent for the treatment of inflammatory diseases and skeletal muscular dystrophies is also addressed.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | | |
Collapse
|
19
|
Plant PJ, North ML, Ward A, Ward M, Khanna N, Correa J, Scott JA, Batt J. Hypertrophic airway smooth muscle mass correlates with increased airway responsiveness in a murine model of asthma. Am J Respir Cell Mol Biol 2011; 46:532-40. [PMID: 22108300 DOI: 10.1165/rcmb.2011-0293oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increase of airway smooth muscle (ASM) mass in asthma results from hypertrophic and hyperplastic stimuli, and leads to an increase in cellular contractile proteins. However, little evidence correlates the relative contributions of hypertrophic and hyperplastic muscle with functional effects on airway resistance. We performed a ventilator-based assessment of respiratory mechanics and responsiveness to methacholine in a murine model of acute (3-week) ovalbumin (OVA)-induced airway inflammation, compared with a chronic (12-week) model. We correlated functional changes in airways Newtonian resistance (RN), peripheral tissue damping (G), and elastance (H) with the relative contributions of proliferation, hypertrophy, and apoptosis to increased ASM mass. Immunohistochemical analyses of treated (OVA-sensitized and OVA-challenged; OVA/OVA) and control (OVA-sensitized and saline-challenged; OVA/PBS) murine lungs showed an increase in ASM area in chronic, but not acute, OVA/OVA-treated mice that correlated positively with increased airway resistance to methacholine. Acute OVA/OVA-treated ASM exhibited an increase in proliferation with diminished apoptosis, which resolved in the chronic OVA/OVA model. Chronic OVA/OVA-treated ASM exhibited hypertrophy. Distinct temporal differences exist in the response of murine airways to antigenic challenge. We report that ASM proliferation and diminished apoptosis occur during the acute phase, followed by the development of smooth muscle hypertrophy and an increased muscle mass with chronic challenge, that correlate strongly with increased airway Newtonian resistance. The identification of a functionally relevant hypertrophic bronchial muscle mass highlights the possibility of regulating airway muscle hypertrophy as a novel therapeutic target in asthma.
Collapse
Affiliation(s)
- Pamela J Plant
- Division of Clinical Sciences, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Naura AS, Zerfaoui M, Kim H, Abd Elmageed ZY, Rodriguez PC, Hans CP, Ju J, Errami Y, Park J, Ochoa AC, Boulares AH. Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 185:3076-85. [PMID: 20668217 DOI: 10.4049/jimmunol.0904214] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of inducible NO synthase (iNOS) in allergic airway inflammation remains elusive. We tested the hypothesis that iNOS plays different roles during acute versus chronic airway inflammation. Acute and chronic mouse models of OVA-induced airway inflammation were used to conduct the study. We showed that iNOS deletion was associated with a reduction in eosinophilia, mucus hypersecretion, and IL-5 and IL-13 production upon the acute protocol. Such protection was completely abolished upon the chronic protocol. Interestingly, pulmonary fibrosis observed in wild-type mice under the chronic protocol was completely absent in iNOS(-/-) mice despite persistent IL-5 and IL-13 production, suggesting that these cytokines were insufficient for pulmonary fibrosis. Such protection was associated with reduced collagen synthesis and indirect but severe TGF-beta modulation as confirmed using primary lung smooth muscle cells. Although activation of matrix metalloproteinase-2/-9 exhibited little change, the large tissue inhibitor of metalloproteinase-2 (TIMP-2) increase detected in wild-type mice was absent in the iNOS(-/-) counterparts. The regulatory effect of iNOS on TIMP-2 may be mediated by peroxynitrite, as the latter reversed TIMP-2 expression in iNOS(-/-) lung smooth muscle cells and fibroblasts, suggesting that the iNOS-TIMP-2 link may explain the protective effect of iNOS-knockout against pulmonary fibrosis. Analysis of lung sections from chronically OVA-exposed iNOS(-/-) mice revealed evidence of residual but significant protein nitration, prevalent oxidative DNA damage, and poly(ADP-ribose) polymerase-1 activation. Such tissue damage, inflammatory cell recruitment, and mucus hypersecretion may be associated with substantial arginase expression and activity. The results in this study exemplify the complexity of the role of iNOS in asthma and the preservation of its potential as a therapeutic a target.
Collapse
Affiliation(s)
- Amarjit S Naura
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|