1
|
Ušaj A, Sotiridis A, Debevec T. Cardio-Respiratory and Muscle Oxygenation Responses to Submaximal and Maximal Exercise in Normobaric Hypoxia: Comparison between Children and Adults. BIOLOGY 2023; 12:biology12030457. [PMID: 36979149 PMCID: PMC10044758 DOI: 10.3390/biology12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As differential physiological responses to hypoxic exercise between adults and children remain poorly understood, we aimed to comprehensively characterise cardiorespiratory and muscle oxygenation responses to submaximal and maximal exercise in normobaric hypoxia between the two groups. Following familiarisation, fifteen children (Age = 9 ± 1 years) and fifteen adults (Age = 22 ± 2 years) completed two graded cycling exercise sessions to exhaustion in a randomized and single-blind manner in normoxia (NOR; FiO2 = 20.9) and normobaric hypoxia (HYP; FiO2 = 13.0) exercises conditions. Age-specific workload increments were 25 W·3 min−1 for children and 40 W·3 min−1 for adults. Gas exchange and vastus lateralis oxygenation parameters were measured continuously via metabolic cart and near-infrared spectroscopy, respectively. Hypoxia provoked significant decreases in maximal power output PMAX (children = 29%; adults 16% (F = 39.3; p < 0.01)) and power output at the gas exchange threshold (children = 10%; adults:18% (F = 8.08; p = 0.01)) in both groups. Comparable changes were noted in most respiratory and gas exchange parameters at similar power outputs between groups. Children, however, demonstrated, lower PETCO2 throughout the test at similar power outputs and during the maintenance of V˙CO2 at the maximal power output. These data indicate that, while most cardiorespiratory responses to acute hypoxic exercise are comparable between children and adults, there exist age-related differential responses in select respiratory and muscle oxygenation parameters.
Collapse
Affiliation(s)
- Anton Ušaj
- Faculty of Sport, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alexandros Sotiridis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
2
|
Debevec T, Millet GP, Brocherie F. Do twelve normobaric hypoxic exposures indeed provoke relevant acclimatization for high-altitude workers? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:637-638. [PMID: 33175214 DOI: 10.1007/s00484-020-02049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Ušaj A, Mekjavic IB, Kapus J, McDonnell AC, Jaki Mekjavic P, Debevec T. Muscle Oxygenation During Hypoxic Exercise in Children and Adults. Front Physiol 2019; 10:1385. [PMID: 31787903 PMCID: PMC6854007 DOI: 10.3389/fphys.2019.01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION While hypoxia is known to decrease peak oxygen uptake ( V . o 2 max) and maximal power output in both adults and children its influence on submaximal exercise cardiorespiratory and, especially, muscle oxygenation responses remains unclear. METHODS Eight pre-pubertal boys (age = 8 ± 2 years.; body mass (BM) = 29 ± 7 kg) and seven adult males (age = 39 ± 4 years.; BM = 80 ± 8 kg) underwent graded exercise tests in both normoxic (PiO2 = 134 ± 0.4 mmHg) and hypoxic (PiO2 = 105 ± 0.6 mmHg) condition. Continuous breath-by-breath gas exchange and near infrared spectroscopy measurements, to assess the vastus lateralis oxygenation, were performed during both tests. The gas exchange threshold (GET) and muscle oxygenation thresholds were subsequently determined for both groups in both conditions. RESULTS In both groups, hypoxia did not significantly alter either GET or the corresponding V . o 2 at GET. In adults, higher V . E levels were observed in hypoxia (45 ± 6 l/min) compared to normoxia (36 ± 6 l/min, p < 0.05) at intensities above GET. In contrast, in children both the hypoxic V . E and V . o 2 responses were significantly greater than those observed in normoxia only at intensities below GET (p < 0.01 for V . E and p < 0.05 for V . o 2). Higher exercise-related heart rate (HR) levels in hypoxia, compared to normoxia, were only noted in adults (p < 0.01). Interestingly, hypoxia per se did not influence the muscle oxygenation thresholds during exercise in neither group. However, and in contrast to adults, the children exhibited significantly higher total hemoglobin concentration during hypoxic as compared to normoxic exercise (tHb) at lower exercise intensities (30 and 60 W, p = 0.01). CONCLUSION These results suggest that in adults, hypoxia augments exercise ventilation at intensities above GET and might also maintain muscle blood oxygenation via increased HR. On the other hand, children exhibit a greater change of muscle blood perfusion, oxygen uptake as well as ventilation at exercise intensities below GET.
Collapse
Affiliation(s)
- Anton Ušaj
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jernej Kapus
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
4
|
Álvarez-Herms J, Julià-Sánchez S, Corbi F, Odriozola-Martínez A, Burtscher M. Putative Role of Respiratory Muscle Training to Improve Endurance Performance in Hypoxia: A Review. Front Physiol 2019; 9:1970. [PMID: 30697170 PMCID: PMC6341067 DOI: 10.3389/fphys.2018.01970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022] Open
Abstract
Respiratory/inspiratory muscle training (RMT/IMT) has been proposed to improve the endurance performance of athletes in normoxia. In recent years, due to the increased use of hypoxic training method among athletes, the RMT applicability has also been tested as a method to minimize adverse effects since hyperventilation may cause respiratory muscle fatigue during prolonged exercise in hypoxia. We performed a review in order to determine factors potentially affecting the change in endurance performance in hypoxia after RMT in healthy subjects. A comprehensive search was done in the electronic databases MEDLINE and Google Scholar including keywords: “RMT/IMT,” and/or “endurance performance,” and/or “altitude” and/or “hypoxia.” Seven appropriate studies were found until April 2018. Analysis of the studies showed that two RMT methods were used in the protocols: respiratory muscle endurance (RME) (isocapnic hyperpnea: commonly 10–30′, 3–5 d/week) in three of the seven studies, and respiratory muscle strength (RMS) (Powerbreathe device: commonly 2 × 30 reps at 50% MIP (maximal inspiratory pressure), 5–7 d/week) in the remaining four studies. The duration of the protocols ranged from 4 to 8 weeks, and it was found in synthesis that during exercise in hypoxia, RMT promoted (1) reduced respiratory muscle fatigue, (2) delayed respiratory muscle metaboreflex activation, (3) better maintenance of SaO2 and blood flow to locomotor muscles. In general, no increases of maximal oxygen uptake (VO2max) were described. Ventilatory function improvements (maximal inspiratory pressure) achieved by using RMT fostered the capacity to adapt to hypoxia and minimized the impact of respiratory stress during the acclimatization stage in comparison with placebo/sham. In conclusion, RMT was found to elicit general positive effects mainly on respiratory efficiency and breathing patterns, lower dyspneic perceptions and improved physical performance in conditions of hypoxia. Thus, this method is recommended to be used as a pre-exposure tool for strengthening respiratory muscles and minimizing the adverse effects caused by hypoxia related hyperventilation. Future studies will assess these effects in elite athletes.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sonia Julià-Sánchez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Francisco Corbi
- National Institute of Physical Education of Catalonia (INEFC) - Lleida Centre, University of Lleida, Lleida, Spain
| | - Adrian Odriozola-Martínez
- Department of Genetics, Anthropology and Physiology, University of the Basque Country (UPV), Campus de Bizkaia, Bilbao, Spain
| | - Martin Burtscher
- Department of Sport Science, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Twomey R, Wrightson J, Fletcher H, Avraam S, Ross E, Dekerle J. Exercise-induced Fatigue in Severe Hypoxia after an Intermittent Hypoxic Protocol. Med Sci Sports Exerc 2018; 49:2422-2432. [PMID: 28708702 DOI: 10.1249/mss.0000000000001371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Exercise-induced central fatigue is alleviated after acclimatization to high altitude. The adaptations underpinning this effect may also be induced with brief, repeated exposures to severe hypoxia. The purpose of this study was to determine whether (i) exercise tolerance in severe hypoxia would be improved after an intermittent hypoxic (IH) protocol and (ii) exercise-induced central fatigue would be alleviated after an IH protocol. METHODS Nineteen recreationally active men were randomized into two groups who completed ten 2-h exposures in severe hypoxia (IH: partial pressure of inspired O2 82 mm Hg; n = 11) or normoxia (control; n = 8). Seven sessions involved cycling for 30 min at 25% peak power (W˙peak) in IH and at a matched heart rate in normoxia. Participants performed baseline constant-power cycling to task failure in severe hypoxia (TTF-Pre). After the intervention, the cycling trial was repeated (TTF-Post). Before and after exercise, responses to transcranial magnetic stimulation and supramaximal femoral nerve stimulation were obtained to assess central and peripheral contributions to neuromuscular fatigue. RESULTS From pre- to postexercise in TTF-Pre, maximal voluntary contraction (MVC), cortical voluntary activation (VATMS), and potentiated twitch force (Qtw,pot) decreased in both groups (all P < 0.05). After IH, TTF-Post was improved (535 ± 213 s vs 713 ± 271 s, P < 0.05) and an additional isotime trial was performed. After the IH intervention only, the reduction in MVC and VATMS was attenuated at isotime (P < 0.05). No differences were observed in the control group. CONCLUSIONS Whole-body exercise tolerance in severe hypoxia was prolonged after a protocol of IH. This may be related to an alleviation of the central contribution to neuromuscular fatigue.
Collapse
Affiliation(s)
- Rosie Twomey
- 1Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CANADA; 2Centre for Sport and Exercise Science and Medicine, University of Brighton, Eastbourne, UNITED KINGDOM; and 3English Institute of Sport, Bisham Abbey National Sports Centre, Marlow, UNITED KINGDOM
| | | | | | | | | | | |
Collapse
|
6
|
Sotiridis A, Debevec T, Mekjavić IB. Letter to the Editor: Combined effects of hypoxia and heat: importance of hypoxic dose. Am J Physiol Regul Integr Comp Physiol 2018; 314:R228-R229. [PMID: 29388459 DOI: 10.1152/ajpregu.00347.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alexandros Sotiridis
- Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute , Ljubljana , Slovenia
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute , Ljubljana , Slovenia
| | - Igor B Mekjavić
- Department of Automation, Biocybernetics and Robotics, "Jozef Stefan" Institute , Ljubljana , Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
7
|
Ciriello J, Moreau JM, McCoy A, Jones DL. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat. Neurosci Lett 2016; 626:112-8. [PMID: 27222924 DOI: 10.1016/j.neulet.2016.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 04/27/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022]
Abstract
Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada.
| | - Jason M Moreau
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada
| | - Aaron McCoy
- Sigma Advanced Genetic Engineering Labs, Sigma-Aldrich Corp., St. Louis, MO, USA
| | - Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario, London N6A 5C1, Canada; Department of Medicine, The University of Western Ontario, London N6A 5C1, Canada
| |
Collapse
|
8
|
Pandin P, Renard M, Bianchini A, Desjardin P, Obbergh LV. Monitoring Brain and Spinal Cord Metabolism and Function. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojanes.2014.46020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|