1
|
Joda M, Waters KA, Machaalani R. Choline-acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the human infant dorsal motor nucleus of the Vagus (DMNV), and alterations according to sudden infant death syndrome (SIDS) category. Neurobiol Dis 2023; 188:106319. [PMID: 37813167 DOI: 10.1016/j.nbd.2023.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Amongst other molecules, the cholinergic system consists of choline-acetyltransferase (ChAT, - synthesis enzyme), acetylcholinesterase (AChE - primary hydrolysis enzyme), and butyrylcholinesterase (BuChE - secondary hydrolysis enzyme). In the brainstem, the Dorsal Motor Nucleus of The Vagus (DMNV) has high cholinergic expression and is a region of interest in the neuropathology of sudden infant death syndrome (SIDS). SIDS is the unexpected death of a seemingly healthy infant, but postmortem brainstem abnormalities suggesting altered cholinergic regulation have been found. This study aimed to determine the percentage of positive ChAT and AChE neurons within the infant DMNV through immunohistochemistry at the three levels of the brainstem medulla (caudal, intermediate, and rostral), to investigate whether the proportion of neurons positive for these enzymes differs amongst the diagnostic subgroups of SIDS compared to those with an explained cause of Sudden unexpected death in infancy (eSUDI), and whether there were any associations with SIDS risk factors (male gender, cigarette smoke exposure, co-sleeping/bed sharing, and prone sleeping). Results showed that ChAT-positive neurons were lower in the rostral DMNV in the SIDS II cohort, and within the caudal and intermediate DMNV of infants who were exposed to cigarette smoke. These findings suggest altered cholinergic regulation in the brainstem of SIDS infants, with potential contribution of cigarette smoke exposure, presumably via the nicotinic acetylcholinergic receptor system.
Collapse
Affiliation(s)
- Masarra Joda
- Discipline of Medicine, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- Discipline of Medicine, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Rita Machaalani
- Discipline of Medicine, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Al Deleemy M, Huynh B, Waters KA, Machaalani R. Immunohistochemistry for acetylcholinesterase and butyrylcholinesterase in the dorsal motor nucleus of the vagus (DMNV) of formalin-fixed, paraffin-embedded tissue: comparison with reported literature. Histochem Cell Biol 2023; 159:247-262. [PMID: 36422707 DOI: 10.1007/s00418-022-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
The majority of research regarding the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain has been conducted using histochemistry to identify enzymatic activity in frozen fixed tissue. However, retrospective human neurochemistry studies are generally restricted to formalin-fixed, paraffin-embedded (FFPE) tissues that are not suitable for histochemical procedures. The availability of commercially available antibody formulations provides the means to study such tissues by immunohistochemistry (IHC). In this study, we optimised IHC conditions for evaluating the expression of AChE and BuChE in the brainstem, focusing on the dorsal motor nucleus of the vagus, in human and piglet FFPE tissues, using commercially available antibodies. Our results were compared to published reports of histochemically determined AChE and BuChE expression. We varied antibody concentrations and antigen retrieval methods, and evaluated different detection systems, with the overall aim to optimise immunohistochemical staining. The primary findings, consistent across both species, are: (1) AChE and BuChE expression dominated in the neuronal somata, specifically in the neuronal cytoplasm; and (2) no change in the protocol resulted in axonal/neuropil expression of AChE. These results indicate that IHC is a suitable tool to detect AChE and BuChE in FFPE tissue using commercial antibodies, albeit the staining patterns obtained differed from those using histochemistry in frozen tissue. The underlying cause(s) for these differences are discussed in detail and may be associated with the principal components of the staining method, the antibody protein target and/or limitations to the detection of epitopes by tissue fixation.
Collapse
Affiliation(s)
- Masarra Al Deleemy
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Benjamin Huynh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Karen A Waters
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Rita Machaalani
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
3
|
Aishah A, Hinton T, Waters KA, Machaalani R. The α3 and α4 nicotinic acetylcholine receptor (nAChR) subunits in the brainstem medulla of sudden infant death syndrome (SIDS). Neurobiol Dis 2019; 125:23-30. [PMID: 30665006 DOI: 10.1016/j.nbd.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
SIDS occurs in early infancy and predominantly during a sleep period. Abnormalities in nicotine receptor binding and in the expression of the nicotinic acetylcholine receptor (nAChR) subunits α7 and β2 have been reported in the brainstem of SIDS infants. This study focuses on the α3 and α4 nAChR subunits as α3 is important for early postnatal survival while α4 is crucial for nicotine-elicited antinociception and sleep-wake cycle regulation. Tissue from the rostral medulla of infants who died with a known cause of death (eSUDI, n = 7), and from SIDS classified as SIDS I (n = 8) and SIDS II (n = 27), was immunohistochemically stained for the α3 and α4 nAChR subunits and quantified in 9 nuclei comparing amongst these groups. The association with risk factors of sex, cigarette smoke exposure, upper respiratory tract infection (URTI), prone sleeping and bedsharing was also evaluated. Results showed that only α4 changes (increase) were evident in SIDS, occurring in the hypoglossal and cuneate nuclei of SIDS II infants and the nucleus of the spinal trigeminal tract of SIDS I infants. Amongst the SIDS infants, cigarette smoke exposure was only associated with decreased α4 in cribriform fibre tracts, while sex and bedsharing were associated with increases in α3 in the dorsal motor nucleus of the vagus and solitary nucleus, respectively. Combined, these findings suggest that abnormalities in endogenous acetylcholine synthesis and regulation may underlie the altered α3 and α4 nAChR subunit expressions in the SIDS brainstem medulla since the changes were not related to cigarette smoke exposure.
Collapse
Affiliation(s)
- Atqiya Aishah
- Discipline of Pharmacology, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia; The Bosch Institute, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia
| | - Tina Hinton
- Discipline of Pharmacology, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia; The Bosch Institute, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- Central Clinical School of Medicine, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia
| | - Rita Machaalani
- The Bosch Institute, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia; Central Clinical School of Medicine, Faculty of Health and Medicine, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Baldy C, Chamberland S, Fournier S, Kinkead R. Sex-Specific Consequences of Neonatal Stress on Cardio-Respiratory Inhibition Following Laryngeal Stimulation in Rat Pups. eNeuro 2017; 4:ENEURO.0393-17.2017. [PMID: 29308430 PMCID: PMC5753062 DOI: 10.1523/eneuro.0393-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022] Open
Abstract
The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14-P15, pups were instrumented to monitor breathing, O2 saturation (Spo2), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups.
Collapse
Affiliation(s)
- Cécile Baldy
- Department of Pediatrics, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de Québec, Université Laval, Québec, G1V 4G5, Canada
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, Québec Mental Health Institute, Université Laval, Québec, G1J 2G3, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de Québec, Université Laval, Québec, G1V 4G5, Canada
| | - Richard Kinkead
- Department of Pediatrics, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de Québec, Université Laval, Québec, G1V 4G5, Canada
| |
Collapse
|
5
|
Huang J, Waters K, Machaalani R. Hypoxia and nicotine effects on Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor 1 (PAC1) in the developing piglet brainstem. Neurotoxicology 2017; 62:30-38. [DOI: 10.1016/j.neuro.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022]
|
6
|
El-Kashef N, Gomes I, Mercer-Chalmers-Bender K, Schneider PM, Rothschild MA, Juebner M. Comparative proteome analysis for identification of differentially abundant proteins in SIDS. Int J Legal Med 2017; 131:1597-1613. [DOI: 10.1007/s00414-017-1632-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/04/2017] [Indexed: 12/01/2022]
|
7
|
Deficiency of CPEB2-Confined Choline Acetyltransferase Expression in the Dorsal Motor Nucleus of Vagus Causes Hyperactivated Parasympathetic Signaling-Associated Bronchoconstriction. J Neurosci 2016; 36:12661-12676. [PMID: 27810937 DOI: 10.1523/jneurosci.0557-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/19/2016] [Accepted: 10/27/2016] [Indexed: 11/21/2022] Open
Abstract
Cytoplasmic polyadenylation element binding protein 2 (CPEB2) is an RNA-binding protein and translational regulator. To understand the physiological function of CPEB2, we generated CPEB2 knock-out (KO) mice and found that most died within 3 d after birth. CPEB2 is highly expressed in the brainstem, which controls vital functions, such as breathing. Whole-body plethysmography revealed that KO neonates had aberrant respiration with frequent apnea. Nevertheless, the morphology and function of the respiratory rhythm generator and diaphragm neuromuscular junctions appeared normal. We found that upregulated translation of choline acetyltransferase in the CPEB2 KO dorsal motor nucleus of vagus resulted in hyperactivation of parasympathetic signaling-induced bronchoconstriction, as evidenced by increased pulmonary acetylcholine and phosphorylated myosin light chain 2 in bronchial smooth muscles. Specific deletion of CPEB2 in cholinergic neurons sufficiently caused increased apnea in neonatal pups and airway hyper-reactivity in adult mice. Moreover, inhalation of an anticholinergic bronchodilator reduced apnea episodes in global and cholinergic CPEB2-KO mice. Together, the elevated airway constriction induced by cholinergic transmission in KO neonates may account for the respiratory defect and mortality. SIGNIFICANCE STATEMENT This study first generated and characterized cpeb2 gene-deficient mice. CPEB2-knock-out (KO) mice are born alive but most die within 3 d after birth showing no overt defects in anatomy. We found that the KO neonates showed severe apnea and altered respiratory pattern. Such respiratory defects could be recapitulated in mice with pan-neuron-specific or cholinergic neuron-specific ablation of the cpeb2 gene. Further investigation revealed that cholinergic transmission in the KO dorsal motor nucleus of vagus was overactivated because KO mice lack CPEB2-suppressed translation of the rate-limiting enzyme in the production of acetylcholine (i.e., choline acetyltransferase). Consequently, increased parasympathetic signaling leads to hyperactivated bronchoconstriction and abnormal respiration in the KO neonates.
Collapse
|
8
|
MacFarlane PM, Mayer CA, Litvin DG. Microglia modulate brainstem serotonergic expression following neonatal sustained hypoxia exposure: implications for sudden infant death syndrome. J Physiol 2016; 594:3079-94. [PMID: 26659585 DOI: 10.1113/jp271845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neonatal sustained hypoxia exposure modifies brainstem microglia and serotonin expression. The altered brainstem neurochemistry is associated with impaired ventilatory responses to acute hypoxia and mortality. The deleterious effects of sustained hypoxia exposure can be prevented by an inhibitor of activated microglia. These observations demonstrate a potential cause of the brainstem serotonin abnormalities thought to be involved in sudden infant death syndrome. ABSTRACT We showed previously that the end of the second postnatal week (days P11-15) represents a period of development during which the respiratory neural control system exhibits a heightened vulnerability to sustained hypoxia (SH, 11% O2 , 5 days) exposure. In the current study, we investigated whether the vulnerability to SH during the same developmental time period is associated with changes in brainstem serotonin (5-HT) expression and whether it can be prevented by the microglia inhibitor minocycline. Using whole-body plethysmography, SH attenuated the acute (5 min) hypoxic ventilatory response (HVR) and caused a high incidence of mortality compared to normoxia rats. SH also increased microglia cell numbers and decreased 5-HT immunoreactivity in the nucleus of the solitary tract (nTS) and dorsal motor nucleus of the vagus (DMNV). The attenuated HVR, mortality, and changes in nTS and DMNV immunoreactivity was prevented by minocycline (25 mg kg(-1) /2 days during SH). These data demonstrate that the 5-HT abnormalities in distinct respiratory neural control regions can be initiated by prolonged hypoxia exposure and may be modulated by microglia activity. These observations share several commonalities with the risk factors thought to underlie the aetiology of sudden infant death syndrome, including: (1) a vulnerable neonate; (2) a critical period of development; (3) evidence of hypoxia; (4) brainstem gliosis (particularly the nTS and DMNV); and (5) 5-HT abnormalities.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - C A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - D G Litvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
9
|
Praveen V, Praveen S. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis. Front Pediatr 2016; 4:136. [PMID: 28111624 PMCID: PMC5216028 DOI: 10.3389/fped.2016.00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.
Collapse
Affiliation(s)
| | - Shama Praveen
- Providence Little Company of Mary Medical Center , Torrance, CA , USA
| |
Collapse
|
10
|
Lonsdale D. Sudden infant death syndrome and abnormal metabolism of thiamin. Med Hypotheses 2015; 85:922-6. [DOI: 10.1016/j.mehy.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
|
11
|
Vivekanandarajah A, Waters KA, Machaalani R. Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Int J Dev Neurosci 2015; 47:183-91. [DOI: 10.1016/j.ijdevneu.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 01/02/2023] Open
Affiliation(s)
- Arunnjah Vivekanandarajah
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
| | - Karen A. Waters
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
- The Children's HospitalWestmead SydneyNSW2145Australia
| | - Rita Machaalani
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
- The Children's HospitalWestmead SydneyNSW2145Australia
| |
Collapse
|
12
|
Neurochemical abnormalities in the brainstem of the Sudden Infant Death Syndrome (SIDS). Paediatr Respir Rev 2014; 15:293-300. [PMID: 25304427 DOI: 10.1016/j.prrv.2014.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/29/2023]
Abstract
The brainstem has been a focus in Sudden Infant Death Syndrome (SIDS) research for 30 years. Physiological and animal model data show that cardiorespiratory, sleep, and arousal mechanisms are abnormal after exposure to SIDS risk factors or in infants who subsequently die from SIDS. As the brainstem houses the regulatory centres for these functions, it is the most likely site to find abnormalities. True to this hypothesis, data derived over the last 30 years shows that the brainstem of infants who died from SIDS exhibits abnormalities in a number of major neurotransmitter and receptor systems including: catecholamines, neuropeptides, acetylcholinergic, indole amines (predominantly serotonin and its receptors), amino acids (predominantly glutamate), brain derived neurotrophic growth factor (BDNF), and some cytokines. A pattern is emerging of particular brainstem nuclei being consistently affected including the dorsal motor nucleus of the vagus (DMNV), nucleus of the solitary tract (NTS), arcuate nucleus (AN) and raphe. We discuss the implications of these findings and directions that this may lead in future research.
Collapse
|