1
|
Respiratory psychophysiology and COVID-19: A research agenda. Biol Psychol 2023; 176:108473. [PMID: 36535514 PMCID: PMC9756651 DOI: 10.1016/j.biopsycho.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
After multiple waves of the COVID-19 pandemic, it has become clear that the impact of SARS-CoV-2 will carry on for years to come. Acutely infected patients show a broad range of disease severity, depending on virus variant, vaccination status, age and the presence of underlying medical and physical conditions, including obesity. Additionally, a large number of patients who have been infected with the virus present with post-COVID syndrome. In September 2020, the International Society for the Advancement of Respiratory Psychophysiology organized a virtual interest meeting on 'Respiratory research in the age of COVID-19', which aimed to discuss how research in respiratory psychophysiology could contribute to a better understanding of psychophysiological interactions in COVID-19. In the resulting current paper, we propose an interdisciplinary research agenda discussing selected research questions on acute and long-term neurobiological, physiological and psychological outcomes and mechanisms related to respiration and the airways in COVID-19, as well as research questions on comorbidity and potential treatment options, such as physical rehabilitation.
Collapse
|
2
|
McCartney A, Phillips D, James M, Chan O, Neder JA, de-Torres JP, Domnik NJ, Crinion SJ. Ventilatory neural drive in chronically hypercapnic patients with COPD: effects of sleep and nocturnal noninvasive ventilation. Eur Respir Rev 2022; 31:31/165/220069. [PMID: 36130786 DOI: 10.1183/16000617.0069-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
Sleep brings major challenges for the control of ventilation in humans, particularly the regulation of arterial carbon dioxide pressure (P aCO2 ). In patients with COPD, chronic hypercapnia is associated with increased mortality. Therefore, nocturnal high-level noninvasive positive-pressure ventilation (NIV) is recommended with the intention to reduce P aCO2 down to normocapnia. However, the long-term physiological consequences of P aCO2 "correction" on the mechanics of breathing, gas exchange efficiency and resulting symptoms (i.e. dyspnoea) remain poorly understood. Investigating the influence of sleep on the neural drive to breathe and its translation to the mechanical act of breathing is of foremost relevance to create a solid rationale for the use of nocturnal NIV. In this review, we critically discuss the mechanisms by which sleep influences ventilatory neural drive and mechanical consequences in healthy subjects and hypercapnic patients with advanced COPD. We then discuss the available literature on the effects of nocturnal NIV on ventilatory neural drive and respiratory mechanics, highlighting open avenues for further investigation.
Collapse
Affiliation(s)
| | - Devin Phillips
- Dept of Medicine, Queen's University, Kingston, ON, Canada
| | - Matthew James
- Dept of Medicine, Queen's University, Kingston, ON, Canada
| | - Olivia Chan
- Dept of Medicine, Queen's University, Kingston, ON, Canada
| | - J Alberto Neder
- Dept of Medicine, Queen's University, Kingston, ON, Canada.,Division of Respirology and Sleep Medicine, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Juan P de-Torres
- Dept of Medicine, Queen's University, Kingston, ON, Canada.,Division of Respirology and Sleep Medicine, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Nicolle J Domnik
- Dept of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sophie J Crinion
- Dept of Medicine, Queen's University, Kingston, ON, Canada .,Division of Respirology and Sleep Medicine, Kingston Health Sciences Centre, Kingston, ON, Canada
| |
Collapse
|
3
|
Van Diest I. Interoception, conditioning, and fear: The panic threesome. Psychophysiology 2019; 56:e13421. [DOI: 10.1111/psyp.13421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ilse Van Diest
- Health, Behavior & Psychopathology, Faculty of Psychology & Educational Sciences; University of Leuven; Leuven Belgium
| |
Collapse
|
4
|
Goldstein DS. How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am J Physiol Regul Integr Comp Physiol 2019; 316:R301-R317. [PMID: 30649893 DOI: 10.1152/ajpregu.00396.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homeostasis is a founding principle of integrative physiology. In current systems biology, however, homeostasis seems almost invisible. Is homeostasis a key goal driving body processes, or is it an emergent mechanistic fact? In this perspective piece, I propose that the integrative physiological and systems biological viewpoints about homeostasis reflect different epistemologies, different philosophies of knowledge. Integrative physiology is concept driven. It attempts to explain biological phenomena by continuous formation of theories that experimentation or observation can test. In integrative physiology, "function" refers to goals or purposes. Systems biology is data driven. It explains biological phenomena in terms of "omics"-i.e., genomics, gene expression, epigenomics, proteomics, and metabolomics-it depicts the data in computer models of complex cascades or networks, and it makes predictions from the models. In systems biology, "function" refers more to mechanisms than to goals. The integrative physiologist emphasizes homeostasis of internal variables such as Pco2 and blood pressure. The systems biologist views these emphases as teleological and unparsimonious in that the "regulated variable" (e.g., arterial Pco2 and blood pressure) and the "regulator" (e.g., the "carbistat" and "barostat") are unobservable constructs. The integrative physiologist views systems biological explanations as not really explanations but descriptions that cannot account for phenomena we humans believe exist, although they cannot be observed directly, such as feelings and, ultimately, the conscious mind. This essay reviews the history of the two epistemologies, emphasizing autonomic neuroscience. I predict rapprochement of integrative physiology with systems biology. The resolution will avoid teleological purposiveness, transcend pure mechanism, and incorporate adaptiveness in evolution, i.e., "Darwinian medicine."
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
5
|
Zaman J, De Peuter S, Van Diest I, Van den Bergh O, Vlaeyen JWS. Interoceptive cues predicting exteroceptive events. Int J Psychophysiol 2016; 109:100-106. [PMID: 27616473 DOI: 10.1016/j.ijpsycho.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
Abstract
The growing body of research on interoceptive conditioning has predominantly focused on associative learning paradigms that investigated the formation of intero-interoceptive or extero-interoceptive associations. Yet, little research has explored whether interoceptive sensations can enter an intero-exteroceptive association. Therefore, in an interoceptive conditioning paradigm, healthy participants experienced a respiratory resistance for 8s, causing mild dyspnea (interoceptive conditioned stimulus, CS), that was either paired to an aversive electrocutaneous stimulus (unconditioned stimulus, US) (experimental condition, n=25), or presented in an unpaired fashion (control condition, n=25) during the acquisition phase. In a subsequent extinction phase, the US was not delivered anymore. US-expectancy, skin conductance responses (SCR), and eyeblink startle EMG were used as indices of associative learning. During acquisition, we observed stronger US expectancies during the CS as compared to the intertrial interval in the experimental group, but not in the control group, nor during extinction. In line, only in the experimental group did skin conductance responses to the CS increase across acquisition. The pattern of the eyeblink startle data did not reach statistical significance. In sum, interoceptive sensations can become associated with exteroceptive events.
Collapse
Affiliation(s)
- Jonas Zaman
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, box 3726, 3000 Leuven, Belgium.
| | - Steven De Peuter
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, box 3726, 3000 Leuven, Belgium
| | - Ilse Van Diest
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, box 3726, 3000 Leuven, Belgium
| | - Omer Van den Bergh
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, box 3726, 3000 Leuven, Belgium
| | - Johan W S Vlaeyen
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Tiensestraat 102, box 3726, 3000 Leuven, Belgium; Department Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands
| |
Collapse
|
6
|
Respiratory Changes in Response to Cognitive Load: A Systematic Review. Neural Plast 2016; 2016:8146809. [PMID: 27403347 PMCID: PMC4923594 DOI: 10.1155/2016/8146809] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load.
Collapse
|
7
|
Janssens T, Brepoels S, Dupont L, Van den Bergh O. The impact of harmfulness information on citric acid induced cough and urge-to-cough. Pulm Pharmacol Ther 2015; 31:9-14. [DOI: 10.1016/j.pupt.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
8
|
Davenport P, Nalivaiko E. Introduction to special issue "Non-homeostatic control of respiration". Respir Physiol Neurobiol 2014; 204:1-2. [PMID: 25457727 DOI: 10.1016/j.resp.2014.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Paul Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, United States
| | - Eugene Nalivaiko
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|