1
|
Mann LM, Wright MD, Thompson BP, Chang JC, Chan JS, Foster GE, Dominelli PB. The menstrual phase does not impact chemosensitivity during exercise. Physiol Rep 2024; 12:e70169. [PMID: 39715696 DOI: 10.14814/phy2.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
At rest, the menstrual cycle phase impacts ventilation and chemosensitivity. However, during exercise there is inconclusive evidence that the menstrual cycle phase affects ventilation or chemosensitivity. We sought to examine the influence of menstrual phase and hormonal birth control (BC) on chemosensitivity. We tested 12 males and 20 females (10 BC; 10 normally menstruating, NBC) on three occasions. Day 1 was a maximal exercise test and days 2 (follicular phase) and 3 (luteal phase) consisted of three bouts of chemosensitivity testing during cycle exercise at 30% of peak work rate. Females-BC and males completed day 3 approximately 2 weeks after day 2, with females-BC tested during the active phase of their birth control. There were no differences between the two experimental days for any groups for any (hypercapnia, hypoxia, and hyperoxia) chemosensitivity tests, p > 0.05. Females-BC had a significantly lower average response to transient hypercapnia than both females-NBC and males (38% and 42% lower, respectively, p < 0.05). Females-NBC had a significantly smaller change in ventilation to hyperoxia compared to males, -11.7 ± 5.9 versus -17.9 ± 5.4%, respectively (p < 0.05). We conclude that the day-to-day variability in chemosensitivity is not different between males, females-BC and NBC.
Collapse
Affiliation(s)
- Leah M Mann
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Madeline D Wright
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin P Thompson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jou-Chung Chang
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jason S Chan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Glen E Foster
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Paolo B Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Faculty of Kinesiology, University of Calgary, Kelowna, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Farra SD, Jacobs I. Arterial desaturation rate does not influence self-selected knee extension force but alters ventilatory response to progressive hypoxia: A pilot study. Physiol Rep 2024; 12:e15892. [PMID: 38172088 PMCID: PMC10764295 DOI: 10.14814/phy2.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The absolute magnitude and rate of arterial desaturation each independently impair whole-body aerobic exercise. This study examined potential mechanisms underlying the rate-dependent relationship. Utilizing an exercise protocol involving unilateral, intermittent, isometric knee extensions (UIIKE), we provided sufficient reperfusion time between contractions to reduce the accumulation of intramuscular metabolic by-products that typically stimulate muscle afferents. The objective was to create a milieu conducive to accentuating any influence of arterial desaturation rate on muscular fatigue. Eight participants completed four UIIKE sessions, performing one 3 s contraction every 30s at a perceived intensity of 50% MVC for 25 min. Participants voluntarily adjusted their force generation to maintain perceptual effort at 50% MVC without feedback. Reductions in inspired oxygen fraction (FI O2 ) decreased arterial saturation from >98% to 70% with varying rates in three trials: FAST (5.3 ± 1.3 min), MED (11.8 ± 2.7 min), and SLOW (19.9 ± 3.7 min). FI O2 remained at 0.21 during the control trial. Force generation and muscle activation remained at baseline levels throughout UIIKE trials, unaffected by the magnitude or rate of desaturation. Minute ventilation increased with hypoxia (p < 0.05), and faster desaturation rates magnified this response. These findings demonstrate that arterial desaturation magnitude and rate independently affect ventilation, but do not influence fatigue development during UIIKE.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
- Tanenbaum Institute for Science in Sport, University of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Acute intermittent hypercapnic hypoxia and cerebral neurovascular coupling in males and females. Exp Neurol 2020; 334:113441. [DOI: 10.1016/j.expneurol.2020.113441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/10/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
|
4
|
Vermeulen TD, Benbaruj J, Brown CV, Shafer BM, Floras JS, Foster GE. Peripheral chemoreflex contribution to ventilatory long-term facilitation induced by acute intermittent hypercapnic hypoxia in males and females. J Physiol 2020; 598:4713-4730. [PMID: 32744340 DOI: 10.1113/jp280458] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Ventilatory long-term facilitation (vLTF) refers to respiratory neuroplasticity that develops following intermittent hypoxia in both healthy and clinical populations. A sustained hypercapnic background is argued to be required for full vLTF expression in humans. We determined whether acute intermittent hypercapnic hypoxia elicits vLTF during isocapnic-normoxic recovery in healthy males and females. We further assessed whether tonic peripheral chemoreflex drive is necessary and contributes to the expression of vLTF. Following 40 min of intermittent hypercapnic hypoxia, minute ventilation was increased throughout 50 min of isocapnic-normoxic recovery. Inhibition of peripheral chemoreflex drive with hyperoxia attenuated the magnitude of vLTF. Males and females achieve vLTF through different respiratory recruitment patterns. ABSTRACT Ventilatory long-term facilitation (vLTF) refers to respiratory neuroplasticity that manifests as increased minute ventilation ( V ̇ I ) following intermittent hypoxia. In humans, hypercapnia sustained throughout intermittent hypoxia and recovery is considered necessary for vLTF expression. We examined whether acute intermittent hypercapnic hypoxia (IHH) induces vLTF, and if peripheral chemoreflex drive contributes to vLTF throughout isocapnic-normoxic recovery. In 19 individuals (9 females, age: 22 ± 3 years; mean ± SD), measurements of tidal volume (VT ), breathing frequency (fB ), V ̇ I , and end-tidal gases ( P ET O 2 and P ETC O 2 ), were made at baseline, during IHH and 50 min of recovery. Totalling 40 min, IHH included 1 min intervals of 40 s hypercapnic hypoxia (target P ET O 2 = 50 mmHg and P ETC O 2 = +4 mmHg above baseline) and 20 s normoxia. During baseline and recovery, dynamic end-tidal forcing maintained resting P ET O 2 and P ETC O 2 and delivered 1 min of hyperoxia ( P ET O 2 = 355 ± 7 mmHg) every 5 min. The depression in V ̇ I during hyperoxia was considered an index of peripheral chemoreflex drive. Throughout recovery V ̇ I was increased 4.6 ± 3.7 l min-1 from baseline (P < 0.01). Hyperoxia depressed V ̇ I at baseline, and augmented depression was evident following IHH (Δ V ̇ I = -0.8 ± 0.9 vs. -1.7 ± 1.3 l min-1 , respectively, P < 0.01). The vLTF was similar between sexes (P = 0.15), but males had larger increases in VT than females (sex-by-time interaction, P = 0.03), and females tended to increase fB (P = 0.09). During isocapnic-normoxic recovery following IHH: (1) vLTF is expressed in healthy humans; (2) vLTF expression is attenuated but not abolished with peripheral chemoreflex inhibition by hyperoxia, suggesting a contribution from central nervous pathways in vLTF expression; and (3) males and females develop similar vLTF through different ventilatory recruitment strategies.
Collapse
Affiliation(s)
- Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada.,Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Canada
| | - Jenna Benbaruj
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
5
|
Farra SD, Cheung SS, Thomas SG, Jacobs I. Rate dependent influence of arterial desaturation on self-selected exercise intensity during cycling. PLoS One 2017; 12:e0171119. [PMID: 28257415 PMCID: PMC5336231 DOI: 10.1371/journal.pone.0171119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to clarify if Ratings of Perceived Exertion (RPE) and self-selected exercise intensity are sensitive not only to alterations in the absolute level of arterial saturation (SPO2) but also the rate of change in SPO2. Twelve healthy participants (31.6 ± 3.9 y, 175.5 ± 7.7 cm, 73.3 ± 10.3 kg, 51 ± 7 mL·kg-1·min-1 [Formula: see text]) exercised four times on a cycle ergometer, freely adjusting power output (PO) to maintain RPE at 5 on Borg's 10-point scale with no external feedback to indicate their exercise intensity. The fraction of inspired oxygen (FIO2) was reduced during three of those trials such that SPO2 decreased during exercise from starting values (>98%) to 70%. These trials were differentiated by the time over which the desaturation occurred: 3.9 ± 1.4 min, -8.7 ± 4.2%•min-1 (FAST), 11.0 ± 3.7 min, -2.8 ± 1.3%•min-1 (MED), and 19.5 ± 5.8 min, -1.5 ± 0.8%•min-1 (SLOW) (P < 0.001). Compared to stable PO throughout the control condition (no SPO2 manipulation), PO significantly decreased across the experimental conditions (FAST = 2.8 ± 2.1 W•% SPO2-1; MED = 2.5 ± 1.8 W•% SPO2-1; SLOW = 1.8 ± 1.6 W•% SPO2-1; P < 0.001). The rates of decline in PO during FAST and MED were similar, with both greater than SLOW. Our results confirm that decreases in absolute SPO2 impair exercise performance and that a faster rate of oxygen desaturation magnifies that impairment.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Cheung
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, Brock University, St. Catherines, Ontario, Canada
| | - Scott G. Thomas
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|