1
|
Trevizan-Baú P, Stanić D, Furuya WI, Dhingra RR, Dutschmann M. Neuroanatomical frameworks for volitional control of breathing and orofacial behaviors. Respir Physiol Neurobiol 2024; 323:104227. [PMID: 38295924 DOI: 10.1016/j.resp.2024.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Breathing is the only vital function that can be volitionally controlled. However, a detailed understanding how volitional (cortical) motor commands can transform vital breathing activity into adaptive breathing patterns that accommodate orofacial behaviors such as swallowing, vocalization or sniffing remains to be developed. Recent neuroanatomical tract tracing studies have identified patterns and origins of descending forebrain projections that target brain nuclei involved in laryngeal adductor function which is critically involved in orofacial behavior. These nuclei include the midbrain periaqueductal gray and nuclei of the respiratory rhythm and pattern generating network in the brainstem, specifically including the pontine Kölliker-Fuse nucleus and the pre-Bötzinger complex in the medulla oblongata. This review discusses the functional implications of the forebrain-brainstem anatomical connectivity that could underlie the volitional control and coordination of orofacial behaviors with breathing.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute, University of Melbourne, Victoria, Australia; Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Davor Stanić
- The Florey Institute, University of Melbourne, Victoria, Australia
| | - Werner I Furuya
- The Florey Institute, University of Melbourne, Victoria, Australia
| | - Rishi R Dhingra
- The Florey Institute, University of Melbourne, Victoria, Australia; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mathias Dutschmann
- The Florey Institute, University of Melbourne, Victoria, Australia; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024; 383:eadk8511. [PMID: 38301001 DOI: 10.1126/science.adk8511] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.
Collapse
Affiliation(s)
- Luna Jammal Salameh
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Veronica Egger
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
3
|
Aucoin R, Lewthwaite H, Ekström M, von Leupoldt A, Jensen D. Impact of trigeminal and/or olfactory nerve stimulation on measures of inspiratory neural drive: Implications for breathlessness. Respir Physiol Neurobiol 2023; 311:104035. [PMID: 36792044 DOI: 10.1016/j.resp.2023.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
The perception of breathlessness is mechanistically linked to the awareness of increased inspiratory neural drive (IND). Stimulation of upper airway cold receptors on the trigeminal nerve (TGN) with TGN agonists such as menthol or cool air to the face/nose has been hypothesized to reduce breathlessness by decreasing IND. The aim of this systematic scoping review was to identify and summarize the results of studies in animals and humans reporting on the impact of TGN stimulation or blockade on measures of IND. Thirty-one studies were identified, including 19 in laboratory animals and 12 in human participants. Studies in laboratory animals consistently reported that as TGN activity increased, measures of IND decreased (e.g., phrenic nerve activity). In humans, stimulation of the TGN with a stream of cool air to the face/nose decreased the sensitivity of the ventilatory chemoreflex response to hypercapnia. Otherwise, TGN stimulation with menthol or cool air to the face/note had no effect on measures of IND in humans. This review provides new insight into a potential neural mechanism of breathlessness relief with selected TGN agonists.
Collapse
Affiliation(s)
- Rachelle Aucoin
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montréal, Quebec H2W 1S4, Canada.
| | - Hayley Lewthwaite
- College of Engineering, Science and Environment, School of Environment & Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258, Australia
| | - Magnus Ekström
- Department of Respiratory Medicine, Allergology and Palliative Medicine, Institution for Clinical Sciences in Lund, Lund University, SE-221 00 Lund, Sweden
| | - Andreas von Leupoldt
- Health Psychology, University of Leuven, Tiensestraat 102 Box 3726, 3000 Leuven, Belgium
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montréal, Quebec H2W 1S4, Canada; Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program and Respiratory Epidemiology and Clinical Research Unit, 2155 Guy Street Suite 500, Montréal, Quebec H3H 2R9, Canada
| |
Collapse
|
4
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
5
|
Burstein O, Geva R. The Brainstem-Informed Autism Framework: Early Life Neurobehavioral Markers. Front Integr Neurosci 2021; 15:759614. [PMID: 34858145 PMCID: PMC8631363 DOI: 10.3389/fnint.2021.759614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASD) have long-term implications on functioning at multiple levels. In this perspective, we offer a brainstem-informed autism framework (BIAF) that traces the protracted neurobehavioral manifestations of ASD to early life brainstem dysfunctions. Early life brainstem-mediated markers involving functions of autonomic/arousal regulation, sleep-wake homeostasis, and sensorimotor integration are delineated. Their possible contributions to the early identification of susceptible infants are discussed. We suggest that the BIAF expands our multidimensional understanding of ASD by focusing on the early involvement of brainstem systems. Importantly, we propose an integrated BIAF screener that brings about the prospect of a sensitive and reliable early life diagnostic scheme for weighing the risk for ASD. The BIAF screener could provide clinicians substantial gains in the future and may carve customized interventions long before the current DSM ASD phenotype is manifested using dyadic co-regulation of brainstem-informed autism markers.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Trevizan-Baú P, Dhingra RR, Furuya WI, Stanić D, Mazzone SB, Dutschmann M. Forebrain projection neurons target functionally diverse respiratory control areas in the midbrain, pons, and medulla oblongata. J Comp Neurol 2020; 529:2243-2264. [PMID: 33340092 DOI: 10.1002/cne.25091] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Eupnea is generated by neural circuits located in the ponto-medullary brainstem, but can be modulated by higher brain inputs which contribute to volitional control of breathing and the expression of orofacial behaviors, such as vocalization, sniffing, coughing, and swallowing. Surprisingly, the anatomical organization of descending inputs that connect the forebrain with the brainstem respiratory network remains poorly defined. We hypothesized that descending forebrain projections target multiple distributed respiratory control nuclei across the neuroaxis. To test our hypothesis, we made discrete unilateral microinjections of the retrograde tracer cholera toxin subunit B in the midbrain periaqueductal gray (PAG), the pontine Kölliker-Fuse nucleus (KFn), the medullary Bötzinger complex (BötC), pre-BötC, or caudal midline raphé nuclei. We quantified the regional distribution of retrogradely labeled neurons in the forebrain 12-14 days postinjection. Overall, our data reveal that descending inputs from cortical areas predominantly target the PAG and KFn. Differential forebrain regions innervating the PAG (prefrontal, cingulate cortices, and lateral septum) and KFn (rhinal, piriform, and somatosensory cortices) imply that volitional motor commands for vocalization are specifically relayed via the PAG, while the KFn may receive commands to coordinate breathing with other orofacial behaviors (e.g., sniffing, swallowing). Additionally, we observed that the limbic or autonomic (interoceptive) systems are connected to broadly distributed downstream bulbar respiratory networks. Collectively, these data provide a neural substrate to explain how volitional, state-dependent, and emotional modulation of breathing is regulated by the forebrain.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, Victoria, Australia
| | - Rishi R Dhingra
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, Victoria, Australia
| | - Werner I Furuya
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, Victoria, Australia
| | - Davor Stanić
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Dutschmann M, Bautista TG, Trevizan-Baú P, Dhingra RR, Furuya WI. The pontine Kölliker-Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity. Respir Physiol Neurobiol 2020; 284:103563. [PMID: 33053424 DOI: 10.1016/j.resp.2020.103563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 01/31/2023]
Abstract
The pontine Kölliker-Fuse nucleus (KFn) is a core nucleus of respiratory network that mediates the inspiratory-expiratory phase transition and gates eupneic motor discharges in the vagal and hypoglossal nerves. In the present study, we investigated whether the same KFn circuit may also gate motor activities that control the resistance of the nasal airway, which is of particular importance in rodents. To do so, we simultaneously recorded phrenic, facial, vagal and hypoglossal cranial nerve activity in an in situ perfused brainstem preparation before and after bilateral injection of the GABA-receptor agonist isoguvacine (50-70 nl, 10 mM) into the KFn (n = 11). Our results show that bilateral inhibition of the KFn triggers apneusis (prolonged inspiration) and abolished pre-inspiratory discharge of facial, vagal and hypoglossal nerves as well as post-inspiratory discharge in the vagus. We conclude that the KFn plays a critical role for the eupneic regulation of naso-pharyngeal airway patency and the potential functions of the KFn in regulating airway patency and orofacial behavior is discussed.
Collapse
Affiliation(s)
- M Dutschmann
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia.
| | - T G Bautista
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - P Trevizan-Baú
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - R R Dhingra
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - W I Furuya
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
8
|
Thoracic sympathetic chain stimulation modulates and entrains the respiratory pattern. Auton Neurosci 2019; 218:16-24. [DOI: 10.1016/j.autneu.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022]
|
9
|
An arterially perfused brainstem preparation of guinea pig to study central mechanisms of airway defense. J Neurosci Methods 2019; 317:49-60. [DOI: 10.1016/j.jneumeth.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/18/2022]
|
10
|
Gonçalves CM, Mulkey DK. Bicarbonate directly modulates activity of chemosensitive neurons in the retrotrapezoid nucleus. J Physiol 2018; 596:4033-4042. [PMID: 29873079 DOI: 10.1113/jp276104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Changes in CO2 result in corresponding changes in both H+ and HCO3- and despite evidence that HCO3- can function as an independent signalling molecule, there is little evidence suggesting HCO3- contributes to respiratory chemoreception. We show that HCO3- directly activates chemosensitive retrotrapezoid nucleus (RTN) neurons. Identifying all relevant signalling molecules is essential for understanding how chemoreceptors function, and because HCO3- and H+ are buffered by separate cellular mechanisms, having the ability to sense both modalities adds additional information regarding changes in CO2 that are not necessarily reflected by pH alone. HCO3- may be particularly important for regulating activity of RTN chemoreceptors during sustained intracellular acidifications when TASK-2 channels, which appear to be the sole intracellular pH sensor, are minimally active. ABSTRACT Central chemoreception is the mechanism by which the brain regulates breathing in response to changes in tissue CO2 /H+ . The retrotrapezoid nucleus (RTN) is an important site of respiratory chemoreception. Mechanisms underlying RTN chemoreception involve H+ -mediated activation of chemosensitive neurons and CO2 /H+ -evoked ATP-purinergic signalling by local astrocytes, which activates chemosensitive neurons directly and indirectly by maintaining vascular tone when CO2 /H+ levels are high. Although changes in CO2 result in corresponding changes in both H+ and HCO3- and despite evidence that HCO3- can function as an independent signalling molecule, there is little evidence suggesting HCO3- contributes to respiratory chemoreception. Therefore, the goal of this study was to determine whether HCO3- regulates activity of chemosensitive RTN neurons independent of pH. Cell-attached recordings were used to monitor activity of chemosensitive RTN neurons in brainstem slices (300 μm thick) isolated from rat pups (postnatal days 7-11) during exposure to low or high concentrations of HCO3- . In a subset of experiments, we also included 2',7'-bis(2carboxyethyl)-5-(and 6)-carboxyfluorescein (BCECF) in the internal solution to measure pHi under each experimental condition. We found that HCO3- activates chemosensitive RTN neurons by mechanisms independent of intracellular or extracellular pH, glutamate, GABA, glycine or purinergic signalling, soluble adenylyl cyclase activity, nitric oxide or KCNQ channels. These results establish HCO3- as a novel independent modulator of chemoreceptor activity, and because the levels of HCO3- along with H+ are buffered by independent cellular mechanisms, these results suggest HCO3- chemoreception adds additional information regarding changes in CO2 that are not necessarily reflected by pH.
Collapse
Affiliation(s)
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, USA
| |
Collapse
|
11
|
Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proc Natl Acad Sci U S A 2017; 114:12815-12820. [PMID: 29133427 DOI: 10.1073/pnas.1711536114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO2-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.
Collapse
|