1
|
Keshavarzi A, Asi Shirazi A, Korfanta R, Královič N, Klacsová M, Martínez JC, Teixeira J, Combet S, Uhríková D. Thermodynamic and Structural Study of Budesonide-Exogenous Lung Surfactant System. Int J Mol Sci 2024; 25:2990. [PMID: 38474237 PMCID: PMC10931555 DOI: 10.3390/ijms25052990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant's lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide-enriched Curosurf®.
Collapse
Affiliation(s)
- Atoosa Keshavarzi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Ali Asi Shirazi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Rastislav Korfanta
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Nina Královič
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| | | | - José Teixeira
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; (J.T.); (S.C.)
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (A.K.); (A.A.S.); (R.K.); (N.K.); (M.K.)
| |
Collapse
|
2
|
Abstract
Drug delivery using a surfactant vehicle has the potential to prevent systemic side effects by delivering therapeutic agents directly to the respiratory system. The inherent chemical properties of surfactant allows it to readily distribute throughout the respiratory system. Therapeutic agents delivered by surfactant can primarily confer additional benefits but have potential to improve surfactant function. It is critically important that additional agents do not interefere with the innate surface tension lowering function of surfactant. Systemic evaluation through benchtop, translational and human trials are required to translate this potential technique into clinical practice.
Collapse
Affiliation(s)
- Arun Sett
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Melbourne, Australia; Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia; Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Victoria, Australia.
| | - Charles C Roehr
- Newborn Services, Southmead Hospital, North Bristol NHS Trust Bristol, Bristol, UK; Faculty of Health Sciences, University of Bristol, Bristol, UK; Oxford Population Health, National Perinatal Epidemiology Unit, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Brett J Manley
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Melbourne, Australia; Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
3
|
Cimato A, Facorro G, Repetto M, Martínez Sarrasague M. New technique to quantify phospolipids in disordered phase in lung surfactant by electron spin resonance. Respir Physiol Neurobiol 2023; 316:104116. [PMID: 37460078 DOI: 10.1016/j.resp.2023.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
In pulmonary surfactant (PS) the coexistence of the ordered (Lo) and disordered (Ld) lipid phases would be essential for an optimal activity. Electron spin resonance (ESR) of PS labeled with 5-doxil stearic acid shows two spectral components called S and W. S/W ratio could be understood as the ratio between the probe population in Lo and in Ld. Although the specificity of S/W as an indicator of Lo/Ld has not yet been demonstrated, S/W has been used qualitatively to study changes in Lo/Ld. The goal of this paper is to stablish the correlation between S/W parameter and the amount of lipids in Ld (%Ld) measured by the ESR TEMPO technique described in our previous work. S/W and %Ld were measured in different PS samples under different experimental conditions. The results showed an inverse correlation between S/W and %Ld (r = -0.983; p < 0.001). We demonstrated that the S/W is sensible to the changes of Lo/Ld and can be used to quantify the %Ld.
Collapse
Affiliation(s)
- Alejandra Cimato
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Graciela Facorro
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa Repetto
- Cátedra de Química General e Inorgánica, Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Margarita Martínez Sarrasague
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Lin CW, Fan CH, Yeh CK. The Impact of Surface Drug Distribution on the Acoustic Behavior of DOX-Loaded Microbubbles. Pharmaceutics 2021; 13:pharmaceutics13122080. [PMID: 34959362 PMCID: PMC8703561 DOI: 10.3390/pharmaceutics13122080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Previous studies have reported substantial improvement of microbubble (MB)-mediated drug delivery with ultrasound when drugs are loaded onto the MB shell compared with a physical mixture. However, drug loading may affect shell properties that determine the acoustic responsiveness of MBs, producing unpredictable outcomes. The aim of this study is to reveal how the surface loaded drug (doxorubicin, DOX) affects the acoustic properties of MBs. A suitable formulation of MBs for DOX loading was first identified by regulating the proportion of two lipid materials (1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phospho-rac-glycerol sodium salt (DSPG)) with distinct electrostatic properties. We found that the DOX loading capacity of MBs was determined by the proportion of DSPG, since there was an electrostatic interaction with DOX. The DOX payload reduced the lipid fluidity of MBs, although this effect was dependent on the spatial uniformity of DOX on the MB shell surface. Loading DOX onto MBs enhanced acoustic stability 1.5-fold, decreased the resonance frequency from 12–14 MHz to 5–7 MHz, and reduced stable cavitation dose by 1.5-fold, but did not affect the stable cavitation threshold (300 kPa). Our study demonstrated that the DOX reduces lipid fluidity and decreases the elasticity of the MB shell, thereby influencing the acoustic properties of MBs.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
5
|
Cimato A, Facorro G, Martínez Sarrasague M. Budesonide associated with exogenous pulmonary surfactant in a novel formulation to improve the delivery to the lung. Respir Physiol Neurobiol 2021; 296:103825. [PMID: 34808585 DOI: 10.1016/j.resp.2021.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Lung delivery for glucocorticoids (GCs) is very low and depends on the system used. Exogenous pulmonary surfactant (EPS) is a promising tool to transporting GCs efficiently to the airways. We developed a new formulation of EPS with Budesonide (BUD) incorporated into EPS membranes (EPS-BUD) to improve lung delivery of BUD. We evaluated the biodistribution and pharmacokinetic of the transported BUD by intra-tracheal instillation of EPS-BUD in healthy rats. Aqueous suspension of Budesonide was used as control. Budesonide and its esters present in trachea, kidneys and lungs were determined by HPLC. The delivery of BUD in lung for EPS-BUD group was 75 % of total instilled and only 35 % for the control group. BUD was rapidly internalized in pneumocytes and a high proportion of Budesonide esters and persistent concentrations of active free BUD were found for up to 6 h after instillation. The new EPS-BUD formulation developed significantly improves the deposition and increases the permanence of BUD in lung.
Collapse
Affiliation(s)
- Alejandra Cimato
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Graciela Facorro
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Margarita Martínez Sarrasague
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
7
|
Cimato A, Facorro G, Martínez Sarrasague M. Determining the fluid ordered and disordered phases in a pulmonary surfactant by electron spin resonance technique. Respir Physiol Neurobiol 2019; 271:103309. [PMID: 31561012 DOI: 10.1016/j.resp.2019.103309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/26/2022]
Abstract
Pulmonary surfactant main function is to reduce surface tension at alveolar interface. Two lipids phases coexist in surfactant membranes: a liquid-ordered (Lo) and a liquid-disordered (Ld) phases. This coexistence of phases would be crucial for the surfactant activity. Until now, the proportion of phases was determined qualitatively. We design an electronic spin resonance technique to quantify the lipid fraction in Ld phase. An exogenous pulmonary surfactant (EPS) with or without extra Cho was labeled with 5-doxil stearic acid to estimate the membrane fluidity and with TEMPO to determine the PL in Ld phase. A unique equation was established for the calculation of PL in Ld phase with an error of less than 3%. TEMPO partition coefficient was (0.78 ± 0.03). Cholesterol added to EPS did not modify this coefficient. The equation is valid for different batches of surfactant regardless of the cholesterol content. The proposed method is simple, precise and allows evaluating changes in lateral structure that could affect surfactant biophysical properties.
Collapse
Affiliation(s)
- Alejandra Cimato
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Graciela Facorro
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Margarita Martínez Sarrasague
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Rüegger CM, Bassler D. Alternatives to systemic postnatal corticosteroids: Inhaled, nebulized and intratracheal. Semin Fetal Neonatal Med 2019; 24:207-212. [PMID: 30992184 DOI: 10.1016/j.siny.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concern about adverse outcomes with the use of systemic postnatal corticosteroids (PCS) for bronchopulmonary dysplasia (BPD) have led to the widespread use of alternative methods of administration in research and clinical care. Theoretically, administration of topical (directly to the lung) corticosteroids may allow for beneficial effects on the pulmonary system with a lower risk of undesirable side effects compared with systemic administration. Current evidence suggests that inhaled corticosteroids may be an effective therapy in the management of developing BPD in preterm infants, but questions about their safety remain. An alternative to inhalation is the intratracheal administration of corticosteroids using surfactant as a vehicle, but this approach has only been studied in a limited number of infants. We review the evidence for the short-term clinical efficacy and safety of inhaled, nebulized and intratracheal PCS for the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Christoph M Rüegger
- Department of Neonatology, University Hospital and University of Zürich, Zürich, Switzerland.
| | - Dirk Bassler
- Department of Neonatology, University Hospital and University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Postnatal steroids in extreme preterm infants: Intra-tracheal instillation using surfactant as a vehicle. Paediatr Respir Rev 2018; 25:78-84. [PMID: 28651937 DOI: 10.1016/j.prrv.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
Abstract
Chronic Lung Disease (CLD) is a common respiratory morbidity in survivors following extreme preterm birth, and is associated with adverse neurodevelopment in the long term. Besides demographics, multiple risk factors are implicated in the pathogenesis of CLD. However, early lung inflammation appears to be the common pathway that leads to the pathological and clinical changes observed in CLD. Postnatal use of systemic steroids has been successful in reducing the incidence of CLD but resulted in unacceptable adverse neurodevelopmental outcomes. The efficacy of inhaled steroids is not yet established. We review the evidence of tracheal instillation of steroids using surfactant as a lipid vehicle, including published data on drug distribution, in vitro physical studies, and clinical trials in animals and human infants.
Collapse
|
10
|
Cimato A, Facorro G, Martínez Sarrasague M. Developing an exogenous pulmonary surfactant-glucocorticoids association: Effect of corticoid concentration on the biophysical properties of the surfactant. Respir Physiol Neurobiol 2017; 247:80-86. [PMID: 28963086 DOI: 10.1016/j.resp.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 12/24/2022]
Abstract
Glucocorticoids (GCs) are used to treat lung disease. GCs incorporated in an exogenous pulmonary surfactant (EPS) could be an alternative management to improve drug delivery avoiding side effects. In the development of these pharmaceutical products, it is important to know the maximum amount of GC that can be incorporated and if increasing quantities of GCs alter EPS biophysical properties. Formulations containing EPS and beclomethasone, budesonide or fluticasone were analyzed (PL 10mg/ml; GC 1-2mg/ml). The microstructure was evaluated by electron paramagnetic resonance spectroscopy, GCs incorporated were determined by UV absorption and polarized light microscopy and surfactant activity with pulsating bubble surfactometer. We found that GCs have a ceiling of incorporation of around 10wt%, and that the GC not incorporated remains as crystals in the aqueous phase without altering the biophysical properties of the surfactant. This fact is important, because the greater the proportion of GC that EPS can carry, the better the efficiency of this pulmonary GC system.
Collapse
Affiliation(s)
- Alejandra Cimato
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Graciela Facorro
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Margarita Martínez Sarrasague
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|