1
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Liu Y, Chen W, Gao Y, Wei K. Anti-inflammatory dressing based on hyaluronic acid and hydroxyethyl starch for wound healing. Int J Biol Macromol 2024; 282:137078. [PMID: 39481723 DOI: 10.1016/j.ijbiomac.2024.137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Eliminating persistent inflammation and choosing dressings that provide the best healing environment is key to promoting wound healing. Dynamic and reversible hydrogels have attracted much attention because of their capacity to adapt to irregular wound surfaces. Herein, oxidized hydroxyethyl starch (OHES) and hyaluronic acid (HA-ADH) were crosslinked via the dynamic acylhydrazone bond to form an anti-inflammatory function hydrogel (HA-ADH/OHES@XT) that could release xanthatin (XT) slowly. The HA-ADH/OHES hydrogels showed an appropriate gelation time, notable water-retaining capacity, self-healing, suitable biodegradability, and good biocompatibility for wound healing applications. In vivo experiments demonstrated that HA-ADH/OHES@XT hydrogels promoted tissue regeneration and wound healing at a rate of approximately 89.1 % on day 20 by reducing inflammation, increasing collagen deposition, and promoting re-epithelialization, indicating their great potential as a wound dressing.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Wenyu Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yuanyuan Gao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Han J, Wang J, Wang Y, Zhu Z, Zhang S, Wu B, Meng M, Zhao J, Wang D. Sesquiterpene lactones-enriched fractions from Xanthium mongolicum Kitag alleviate RA by regulating M1 macrophage polarization via NF-κB and MAPK signaling pathway. Front Pharmacol 2023; 14:1104153. [PMID: 36778009 PMCID: PMC9909009 DOI: 10.3389/fphar.2023.1104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease, characterized by activated M1-like macrophage in the joint. Xanthium mongolicum Kitag (X. mongolicum) is a traditional medicinal plant that has long been used to treat RA and other immune diseases in China. Methods: Fractions of X. mongolicum were separated based on polarity. Anti-RA activity of the fractions were screened by LPS-stimulated RAW264.7 macrophage in vitro. The major active compounds were identified by UPLC-MS and quantified by HPLC. The anti-RA effects of the active fraction was evaluated in complete freund's adjuvant (CFA)-induced arthritis and collagen-induced arthritis (CIA) mouse models in vivo and LPS-stimulated macrophage in vitro. Results: Sesquiterpene lactones-enriched fraction from X. mongolicum (SL-XM) exhibited the strongest anti-RA activity among all components in vitro. Five major constituents i.e., Xanthinosin (1), Xanthatin (2), Mogolide D (3), Mogolide E (4), and Mogolide A (5) were identified as major compounds of SL-XM. SL-XM ameliorated symptoms of CFA and CIA induced arthritis mice model. Furthermore, SL-XM treatment inhibited LPS-induced M1 macrophages polarization. In addition, SL-XM inhibited the phosphorylation of NF-κB and MAPK signaling pathways in LPS-induced macrophage and CIA-challenged mice. Discussion: The main anti-RA active fraction of X. mongolicum may be the Sesquiterpene lactones, which includes five key compounds. SL-XM may exert its anti-RA effect by suppressing M1 macrophage polarization via the NF-κB and MAPK signaling pathway.
Collapse
Affiliation(s)
- Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Jing Han, ; Jianning Zhao, ; Dongsheng Wang,
| | - Jingwen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yicun Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhiqi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingrong Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingsong Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China,*Correspondence: Jing Han, ; Jianning Zhao, ; Dongsheng Wang,
| | - Dongsheng Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China,*Correspondence: Jing Han, ; Jianning Zhao, ; Dongsheng Wang,
| |
Collapse
|
4
|
Chen X, Xiao Z, Jiang Z, Jiang Y, Li W, Wang M. Schisandrin B Attenuates Airway Inflammation and Airway Remodeling in Asthma by Inhibiting NLRP3 Inflammasome Activation and Reducing Pyroptosis. Inflammation 2021; 44:2217-2231. [PMID: 34143347 DOI: 10.1007/s10753-021-01494-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023]
Abstract
Asthma is a chronic inflammatory disorder of the airways. Schisandrin B (SB) is the main effective component. This study investigated the effects of SB on airway inflammation and airway remodeling in asthma. The rat model of asthma was established. The rats were treated with SB to evaluate the effects of SB on airway inflammation, airway remodeling, NLRP3 inflammasome activation, and pyroptosis. Alveolar macrophages of rats were isolated, and the macrophage inflammatory model was established by lipopolysaccharide (LPS) induction. The LPS-induced macrophages were treated with SB. The binding relationship between miR-135a-5p and TPRC1 was analyzed. LPS + SB-treated macrophages were transfected with miR-135a-5p inhibitor. The expressions of key factors of the STAT3/NF-κB pathway were detected. SB reduced airway inflammation and airway remodeling in asthmatic rats. SB inhibited NLRP3 inflammasome activation and reduced pyroptosis in asthmatic rats and LPS-induced macrophages. SB reversely regulated the miR-135a-5p/TRPC1 axis. Downregulation of miR-135a-5p attenuated the inhibitory effect of SB on NLRP3 inflammasome activation. SB inhibited the STAT3/NF-κB pathway via the miR-135a-5p/TRPC1 axis. In conclusion, SB inhibited NLRP3 inflammasome activation and reduced pyroptosis via the miR-135a-5p/TRPC1/STAT3/NF-κB axis, thus alleviating airway inflammation and airway remodeling in asthma. This study may confer novel insights for the management of asthma.
Collapse
Affiliation(s)
- Xiufeng Chen
- Department of Pediatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| | - Zhen Xiao
- Department of Pediatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China.
| | - Zhiyan Jiang
- Department of Pediatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China.
| | - Yonghong Jiang
- Department of Pediatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| | - Wen Li
- Department of Pediatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| | - Mingjing Wang
- Department of Pediatrics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| |
Collapse
|