1
|
Matteoli G, Alvente S, Bastianini S, Berteotti C, Ciani E, Cinelli E, Lo Martire V, Medici G, Mello T, Miglioranza E, Silvani A, Mutolo D, Zoccoli G. Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. J Sleep Res 2024:e14295. [PMID: 39049436 DOI: 10.1111/jsr.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elenia Cinelli
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Yoda S, Onimaru H, Izumizaki M. Effects of aconitine on the respiratory activity of brainstem-spinal cord preparations isolated from newborn rats. Pflugers Arch 2023; 475:1301-1314. [PMID: 37707585 DOI: 10.1007/s00424-023-02857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Aconitine is a sodium channel opener, but its effects on the respiratory center are not well understood. We investigated the dose-dependent effects of aconitine on central respiratory activity in brainstem-spinal cord preparations isolated from newborn rats. Bath application of 0.5-5 μM aconitine caused an increase in respiratory rhythm and decrease in the inspiratory burst amplitude of the fourth cervical ventral root (C4). Separate application of aconitine revealed that medullary neurons were responsible for the respiratory rhythm increase, and neurons in both the medulla and spinal cord were involved in the decrease of C4 amplitude by aconitine. A local anesthetic, lidocaine (100 μM), or a voltage-dependent sodium channel blocker, tetrodotoxin (0.1 μM), partially antagonized the C4 amplitude decrease by aconitine. Tetrodotoxin treatment tentatively decreased the respiratory rhythm, but lidocaine tended to further increase the rhythm. Treatment with 100 μM riluzole or 100 μM flufenamic acid, which are known to inhibit respiratory pacemaker activity, did not reduce the respiratory rhythm enhanced by aconitine + lidocaine. The application of 1 μM aconitine depolarized the preinspiratory, expiratory, and inspiratory motor neurons. The facilitated burst rhythm of inspiratory neurons after aconitine disappeared in a low Ca2+/high Mg2+ synaptic blockade solution. We showed the dose-dependent effects of aconitine on respiratory activity. The antagonists reversed the depressive effects of aconitine in different manners, possibly due to their actions on different sites of sodium channels. The burst-generating pacemaker properties of neurons may not be involved in the generation of the facilitated rhythm after aconitine treatment.
Collapse
Affiliation(s)
- Shunya Yoda
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
3
|
Onimaru H, Fukushi I, Ikeda K, Yazawa I, Takeda K, Okada Y, Izumizaki M. Cell Responses of the Ventrolateral Medulla to PAR1 Activation and Changes in Respiratory Rhythm in Newborn Rat En Bloc Brainstem-Spinal Cord Preparations. Neuroscience 2023; 528:89-101. [PMID: 37557948 DOI: 10.1016/j.neuroscience.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 μM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 μM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 μM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | - Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo, Japan
| | - Itaru Yazawa
- Department of Food & Nutrition, Kyushu Nutrition Welfare University, Fukuoka, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Ota S, Onimaru H, Izumizaki M. Effect of cisplatin on respiratory activity in neonatal rats. Pflugers Arch 2023; 475:233-248. [PMID: 36289078 DOI: 10.1007/s00424-022-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 02/01/2023]
Abstract
One side effect of cisplatin, a cytotoxic platinum anticancer drug, is peripheral neuropathy; however, its central nervous system effects remain unclear. We monitored respiratory nerve activity from the C4 ventral root in brainstem and spinal cord preparations from neonatal rats (P0-3) to investigate its central effects. Bath application of 10-100 μM cisplatin for 15-20 min dose-dependently decreased the respiratory rate and increased the amplitude of C4 inspiratory activity. These effects were not reversed after washout. In separate perfusion experiments, cisplatin application to the medulla decreased the respiratory rate, and application to the spinal cord increased the C4 burst amplitude without changing the burst rate. Application of other platinum drugs, carboplatin or oxaliplatin, induced no change of respiratory activity. A membrane potential analysis of respiratory-related neurons in the rostral medulla showed that firing frequencies of action potentials in the burst phase tended to decrease during cisplatin application. In contrast, in inspiratory spinal motor neurons, cisplatin application increased the peak firing frequency of action potentials during the inspiratory burst phase. The increased burst amplitude and decreased respiratory frequency were partially antagonized by riluzole and picrotoxin, respectively. Taken together, cisplatin inhibited respiratory rhythm via medullary inhibitory system activation and enhanced inspiratory motor nerve activity by changing the firing property of motor neurons.
Collapse
Affiliation(s)
- Shinichiro Ota
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| |
Collapse
|
5
|
Katsuki S, Ota S, Yoda S, Onimaru H, Dohi K, Izumizaki M. Effects of ANP and BNP on the generation of respiratory rhythms in brainstem-spinal cord preparation isolated from newborn rats. Biomed Res 2022; 43:127-135. [PMID: 35989288 DOI: 10.2220/biomedres.43.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natriuretic peptides (NPs) are a family of peptide hormones produced in cardiac muscle cells and consist mainly of three types: atrial NP (ANP), B-type (or brain) NP (BNP), and C-type NP. We herein report the effects of ANP and BNP on central respiratory activity in brainstem-spinal cord preparation isolated from newborn rats. Bath application of these peptides (100 nM) induced a weak transient depression of the respiratory rhythm followed by recovery. Respiratory-related neurons in the rostral ventrolateral medulla showed a tendency for transient hyperpolarization followed by recovery during the application of ANP or BNP. The application of a membrane-permeable cGMP, 8-Br-cGMP (10 or 20 μM), did not induce significant effects on respiratory rhythm, suggesting no involvement of guanylyl cyclase in effects of ANP or BNP. We also examined effects of BNP on respiratory depression induced by the sedative dexmedetomidine, which exerts an inhibitory influence on respiratory rhythm. When pretreated with 50 nM BNP, the inhibitory effect of 100 nM dexmedetomidine was significantly reduced. Our findings suggest that ANP and BNP act as mild excitatory agents with sustained effects on respiratory rhythm after an initial transient depression.
Collapse
Affiliation(s)
- Shino Katsuki
- Department of Physiology, Showa University School of Medicine.,Department of Emergency, Disaster and Critical Care Medicine, Showa University
| | - Shinichiro Ota
- Department of Physiology, Showa University School of Medicine
| | - Shunya Yoda
- Department of Physiology, Showa University School of Medicine
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine
| | - Kenji Dohi
- Department of Emergency, Disaster and Critical Care Medicine, Showa University
| | | |
Collapse
|
6
|
Cinelli E. Prelude Special Issue: Breathing and Evolution. Respir Physiol Neurobiol 2021; 297:103832. [PMID: 34958947 DOI: 10.1016/j.resp.2021.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134, Firenze, Italy.
| |
Collapse
|