1
|
Yun GS, In YN, Kang C, Park JS, You Y, Min JH, Ahn HJ, Yoo I, Kim SW, Oh SK, Lee IH, Kim DM. Development of a strategy for assessing blood-brain barrier disruption using serum S100 calcium-binding protein B and neuron-specific enolase in early stage of neuroemergencies: A preliminary study. Medicine (Baltimore) 2022; 101:e29644. [PMID: 35839066 PMCID: PMC11132376 DOI: 10.1097/md.0000000000029644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Rapid disease progression in neuroemergencies is associated with blood-brain barrier (BBB) disruption. We investigated a less invasive strategy for assessing BBB status by evaluating S100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE) at early stages of the hypoxic-ischemic brain injury (HIBI) cascade. METHODS This retrospective study used prospectively collected data from patients with out-of-hospital cardiac arrest (August 2019-July 2021). Albumin specimens obtained from serum and cerebrospinal fluid via arterial catheter and lumbar puncture were used to measure the albumin quotient (Qa), which is widely accepted as the gold standard method for detecting BBB disruption. Serum S100B and NSE levels were measured simultaneously following the return of spontaneous circulation. We conducted linear regression to evaluate the relationship between S100B and Qa and the predictive performance of S100B for abnormal Qa. The primary study outcome was abnormal Qa (>0.007). RESULTS Forty-one patients were enrolled; 30 showed an abnormal Qa suggestive of BBB disruption. S100B levels were significantly higher than in those with a normal Qa (0.244 μg/L [interquartile range [IQR], 0.146-0.823 vs 0.754 μg/L [IQR, 0.317-2.228], P = .03). We report a positive correlation between serum S100B and Qa (R2 = 0.110; P = .04). The area under the receiver operating characteristics curve (AUROC) evaluating the predictive performance of S100B with respect to abnormal Qa was 0.718 (95% confidence interval, 0.556-0.847). The cutoff value for S100B (with respect to BBB disruption) in the total cohort was 0.283 μg/L (sensitivity, 80.0%; specificity, 72.7%). Subgroup analyses in patients with serum neuron-specific enolase (NSE) levels of <40.8 ng/mL (excluding those with established neuronal cell injury) showed an improved correlation coefficient (R2 = 0.382; P < .01) and predictive performance (AUROC, 0.836 [95% confidence interval, 0.629-0.954]) compared with the total cohort. CONCLUSIONS Serum S100B obtained at an early stage of the HIBI cascade is associated with abnormal Qa, suggesting BBB disruption. The predictive performance of S100B and the correlation between serum S100B and Qa can be improved using a complementary strategy (i.e., evaluations of S100B and NSE levels) that combines considerations of cell damage in astrocytes and neurons.
Collapse
Affiliation(s)
- Gi Su Yun
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
| | - Insool Yoo
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
| | - Seung Whan Kim
- Department of Emergency Medicine, Chungnam National University Hospital, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
| | - Se Kwang Oh
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - In Ho Lee
- Department of Radiology, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
| | - Da Mi Kim
- Department of Radiology, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Using Out-of-Hospital Cardiac Arrest (OHCA) and Cardiac Arrest Hospital Prognosis (CAHP) Scores with Modified Objective Data to Improve Neurological Prognostic Performance for Out-of-Hospital Cardiac Arrest Survivors. J Clin Med 2021; 10:jcm10091825. [PMID: 33922191 PMCID: PMC8122729 DOI: 10.3390/jcm10091825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to determine whether accuracy and sensitivity concerning neurological prognostic performance increased for survivors of out-of-hospital cardiac arrest (OHCA) treated with targeted temperature management (TTM), using OHCA and cardiac arrest hospital prognosis (CAHP) scores and modified objective variables. We retrospectively analyzed non-traumatic OHCA survivors treated with TTM. The primary outcome was poor neurological outcome at 3 months after return of spontaneous circulation (cerebral performance category, 3–5). We compared neurological prognostic performance using existing models after adding objective data obtained before TTM from computed tomography (CT), magnetic resonance imaging (MRI), and biomarkers to replace the no-flow time component of the OHCA and CAHP models. Among 106 patients, 61 (57.5%) had poor neurologic outcomes. The area under the receiver operating characteristic (AUROC) curve for the OHCA and CAHP models was 0.89 (95% confidence interval (CI) 0.81–0.94) and 0.90 (95% CI 0.82–0.95), respectively. The prediction of poor neurological outcome improved after replacing no-flow time with a grey/white matter ratio measured using CT, high-signal intensity (HSI) on diffusion-weighted MRI (DWI), percentage of voxel using apparent diffusion coefficient value, and serum neuron-specific enolase levels. When replaced with HSI on DWI, the AUROC and sensitivity of the OHCA and CAHP models were 0.96 and 74.5% and 0.97 and 83.8%, respectively (100% specificity). Prognoses concerning neurologic outcomes improved compared with existing OHCA and CAHP models by adding new objective variables to replace no-flow time. External validation is required to generalize these results in various contexts.
Collapse
|
3
|
Son SH, In YN, Md, Park JS, You Y, Min JH, Yoo I, Cho YC, Jeong W, Ahn HJ, Kang C, Lee BK. Cerebrospinal Fluid Lactate Levels, Brain Lactate Metabolism and Neurologic Outcome in Patients with Out-of-Hospital Cardiac Arrest. Neurocrit Care 2021; 35:262-270. [PMID: 33432527 DOI: 10.1007/s12028-020-01181-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND/OBJECTIVE Cerebrospinal fluid (CSF) and serum lactate levels were assessed to predict poor neurologic outcome 3 months after return of spontaneous circulation (ROSC). We compared arterio-CSF differences in the lactate (ACDL) levels between two neurologic outcome groups. METHODS This retrospective observational study involved out-of-hospital cardiac arrest (OHCA) survivors who had undergone target temperature management. CSF and serum samples were obtained immediately (lactate0), and at 24 (lactate24), 48 (lactate48), and 72 (lactate72) h after ROSC, and ACDL was calculated at each time point. The primary outcome was poor 3-month neurologic outcome (cerebral performance categories 3-5). RESULTS Of 45 patients, 27 (60.0%) showed poor neurologic outcome. At each time point, CSF lactate levels were significantly higher in the poor neurologic outcome group than in the good neurologic outcome group (6.97 vs. 3.37, 4.20 vs. 2.10, 3.50 vs. 2.00, and 2.79 vs. 2.06, respectively; all P < 0.05). CSF lactate's prognostic performance was higher than serum lactate at each time point, and lactate24 showed the highest AUC values (0.89, 95% confidence interval, 0.75-0.97). Over time, ACDL decreased from - 1.30 (- 2.70-0.77) to - 1.70 (- 3.2 to - 0.57) in the poor neurologic outcome group and increased from - 1.22 (- 2.42-0.32) to - 0.64 (- 2.31-0.15) in the good neurologic outcome group. CONCLUSIONS At each time point, CSF lactate showed better prognostic performance than serum lactate. CSF lactate24 showed the highest prognostic performance for 3-month poor neurologic outcome. Over time, ACDL decreased in the poor neurologic outcome group and increased in the good neurologic outcome group.
Collapse
Affiliation(s)
- Seung Ha Son
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | | | - Md
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea. .,Department of Emergency Medicine, College of Medicine, Chungnam National University, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea.
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea.,Department of Emergency Medicine, College of Medicine, Chungnam National University, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Insool Yoo
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea.,Department of Emergency Medicine, College of Medicine, Chungnam National University, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yong Chul Cho
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| |
Collapse
|