1
|
Genswein M, Macias D, McIntosh S, Reiweger I, Hetland A, Paal P. AvaLife-A New Multi-Disciplinary Approach Supported by Accident and Field Test Data to Optimize Survival Chances in Rescue and First Aid of Avalanche Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095257. [PMID: 35564653 PMCID: PMC9104102 DOI: 10.3390/ijerph19095257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Snow sports in the backcountry have seen a steep increase in popularity, and therefore preparedness for efficient companion and organized rescue is important. While technical rescue skills are widely taught, there is a lack of knowledge regarding first aid for avalanche patients. The stressful and time-critical situation for first responders requires a rule-based decision support tool. AvaLife has been designed from scratch, applying mathematical and statistical approaches including Monte Carlo simulations. New analysis of retrospective data and large prospective field test datasets were used to develop evidence-based algorithms exclusively for the avalanche rescue environment. AvaLife differs from other algorithms as it is not just a general-purpose CPR algorithm which has been slightly adapted for the avalanche patient. The sequence of actions, inclusion of the ≥150 cm burial depth triage criterion, advice to limit CPR duration for normothermic patients to 6 min in case of multiple burials and shortage of resources, criteria for using recovered subjects as a resource in the ongoing rescue, the adapted definition of "injuries incompatible with life", reasoning behind the utmost importance of rescue breaths, as well as the updated BLS-iCPR algorithm make AvaLife useful in single and multiple burial rescue. AvaLife is available as a companion rescue basic life support (BLS) version for the recreational user and an advanced companion and organized rescue BLS version for guides, ski patrols and mountain rescuers. AvaLife allows seamless interoperability with advanced life support (ALS) qualified medical personnel arriving on site.
Collapse
Affiliation(s)
- Manuel Genswein
- MountainSafety.info, 7260 Davos, Switzerland
- Correspondence: ; Tel.: +41-79-236-36-76
| | - Darryl Macias
- Department of Emergency Medicine, University of New Mexico, International Mountain Medicine Center, Albuquerque, NM 87131, USA;
| | - Scott McIntosh
- Department of Emergency Medicine, University of Utah Health, AirMed, Salt Lake City, UT 84132, USA;
| | - Ingrid Reiweger
- Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Audun Hetland
- CARE Center for Avalanche Research and Education, UiT The Arctic University of Norway, 9010 Tromsø, Norway;
| | - Peter Paal
- Department of Anesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelsus Medical University, 5010 Salzburg, Austria;
| |
Collapse
|
2
|
Paal P, Pasquier M, Darocha T, Lechner R, Kosinski S, Wallner B, Zafren K, Brugger H. Accidental Hypothermia: 2021 Update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:501. [PMID: 35010760 PMCID: PMC8744717 DOI: 10.3390/ijerph19010501] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Accidental hypothermia is an unintentional drop of core temperature below 35 °C. Annually, thousands die of primary hypothermia and an unknown number die of secondary hypothermia worldwide. Hypothermia can be expected in emergency patients in the prehospital phase. Injured and intoxicated patients cool quickly even in subtropical regions. Preventive measures are important to avoid hypothermia or cooling in ill or injured patients. Diagnosis and assessment of the risk of cardiac arrest are based on clinical signs and core temperature measurement when available. Hypothermic patients with risk factors for imminent cardiac arrest (temperature < 30 °C in young and healthy patients and <32 °C in elderly persons, or patients with multiple comorbidities), ventricular dysrhythmias, or systolic blood pressure < 90 mmHg) and hypothermic patients who are already in cardiac arrest, should be transferred directly to an extracorporeal life support (ECLS) centre. If a hypothermic patient arrests, continuous cardiopulmonary resuscitation (CPR) should be performed. In hypothermic patients, the chances of survival and good neurological outcome are higher than for normothermic patients for witnessed, unwitnessed and asystolic cardiac arrest. Mechanical CPR devices should be used for prolonged rescue, if available. In severely hypothermic patients in cardiac arrest, if continuous or mechanical CPR is not possible, intermittent CPR should be used. Rewarming can be accomplished by passive and active techniques. Most often, passive and active external techniques are used. Only in patients with refractory hypothermia or cardiac arrest are internal rewarming techniques required. ECLS rewarming should be performed with extracorporeal membrane oxygenation (ECMO). A post-resuscitation care bundle should complement treatment.
Collapse
Affiliation(s)
- Peter Paal
- Department of Anesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelsus Medical University, 5020 Salzburg, Austria
- International Commission for Mountain Emergency Medicine (ICAR MedCom), 8302 Kloten, Switzerland; (M.P.); (K.Z.); (H.B.)
| | - Mathieu Pasquier
- International Commission for Mountain Emergency Medicine (ICAR MedCom), 8302 Kloten, Switzerland; (M.P.); (K.Z.); (H.B.)
- Department of Emergency Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Tomasz Darocha
- Department of Anesthesiology and Intensive Care, Medical University of Silesia, 40-001 Katowice, Poland;
| | - Raimund Lechner
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Military Hospital, 89081 Ulm, Germany;
| | - Sylweriusz Kosinski
- Faculty of Health Sciences, Jagiellonian University Medical College, 34-500 Krakow, Poland;
| | - Bernd Wallner
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Ken Zafren
- International Commission for Mountain Emergency Medicine (ICAR MedCom), 8302 Kloten, Switzerland; (M.P.); (K.Z.); (H.B.)
- Department of Emergency Medicine, Alaska Native Medical Center, Anchorage, AK 99508, USA
- Department of Emergency Medicine, Stanford University Medical Center, Stanford University, Palo Alto, CA 94304, USA
| | - Hermann Brugger
- International Commission for Mountain Emergency Medicine (ICAR MedCom), 8302 Kloten, Switzerland; (M.P.); (K.Z.); (H.B.)
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|