1
|
Frings J, Baranowsky A, Korthaus A, Berninger MT, Frosch KH, Fahlbusch H, Fal MF, Ondruschka B, Buhs M, Keller J, Krause M. Arthroscopic Shaver-based Harvest of Minced Cartilage Results in Reduced Chondrocyte Viability and Reduced Quality of Cartilaginous Repair Tissue Compared With Open Harvest and Conventional Fragmentation. Arthroscopy 2024:S0749-8063(24)00397-9. [PMID: 39230539 DOI: 10.1016/j.arthro.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE To characterize and compare the quality of regenerative cartilage tissue (ReCT) after conventional minced cartilage (CMC) and arthroscopic minced cartilage (AMC), in terms of cell viability, gene expression, and matrix synthesis and to investigate the influence of different shaver types. METHODS Chondral tissue was harvested from the knees of 8 porcine donors. Porcine specimens were euthanized one day before harvest. AMC was created with 2 shaver blades in 2 operating modes (oscillating vs forward) and compared with a scalpel-fragmented CMC control. Before histologic analysis, 50% of the tissue was digested to prevent dedifferentiation of chondrocytes to fibroblasts. Cells were cultured and analyzed for cell viability, gene expression of cartilage-specific markers (aggrecan [ACAN], collagen type II, alpha1 [COL2A1], collagen type I, alpha1 [COL1A1], fibronectin-1 [FN1]), and matrix synthesis (Alcian-blue). RESULTS AMC tissue contained fewer viable chondrocytes (41%-54% vs 91%; P = .001-.048) compared with CMC. After culture, CMC showed greater expressions of ACAN (27 virtual copy numbers [VCN]/housekeeping gene) and COL2A1 (30 VCN) compared with AMC (ACAN 2-9 VCN, COL2A1 2-7 VCN, P = .001-.039). AMC presented greater expressions of COL1A1 (9-21 VCN) and FN1 (12-17 VCN) than CMC (1 and 6 VCN, P = .001-.050). The signal intensity of the cartilage matrix formed by CMC (86/mm2) was greater than by AMC (7-10 mm2, P = .001-.032). CONCLUSIONS CMC contained high numbers of viable chondrocytes, resulting in high-quality, hyaline-like ReCT. In contrast, AMC showed impaired chondrocyte quantity and viability, showing greater expressions of fibroblast markers and a decreased formation of mature cartilage matrix in porcine samples. The high chondrogenic potential of CMC to form hyaline-like ReCT was not confirmed for AMC. CLINICAL RELEVANCE On the basis of our findings, arthroscopic harvest of minced cartilage leads to reduced chondrocyte viability and ReCT quality. Accordingly, CMC and AMC cannot be regarded as synonymous techniques, as arthroscopic techniques seem to be less efficacious.
Collapse
Affiliation(s)
- Jannik Frings
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Korthaus
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus T Berninger
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Trauma Surgery, Orthopaedics and Sports Traumatology, BG Hospital Hamburg, Hamburg, Germany
| | - Hendrik Fahlbusch
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milad Farkondeh Fal
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes Keller
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Krause
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Mao J, Huang L, Ding Y, Ma X, Wang Q, Ding L. Insufficiency of collagenases in establishment of primary chondrocyte culture from cartilage of elderly patients receiving total joint replacement. Cell Tissue Bank 2023; 24:759-768. [PMID: 37138136 DOI: 10.1007/s10561-023-10094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Background Collagenases are frequently used in chondrocyte isolation from articular cartilage. However, the sufficiency of this enzyme in establishing primary human chondrocyte culture remains unknown. Methods Cartilage slices shaved from femoral head or tibial plateau of patients receiving total joint replacement surgery (16 hips, 8 knees) were subjected to 0.02% collagenase IA digestion for 16 h with (N = 19) or without (N = 5) the pre-treatment of 0.4% pronase E for 1.5 h. Chondrocyte yield and viability were compared between two groups. Chondrocyte phenotype was determined by the expression ratio of collagen type II to I. The morphology of cultured chondrocytes was monitored with a light microscope.Results Cartilage with pronase E pre-treatment yielded significantly higher chondrocytes than that without the pre-treatment (3,399 ± 1,637 cells/mg wet cartilage vs. 1,895 ± 688 cells/mg wet cartilage; P = 0.0067). Cell viability in the former group was also significantly higher than that in the latter (94% ± 2% vs. 86% ± 6%; P = 0.03). When cultured in monolayers, cells from cartilage with pronase E pre-treatment grew in a single plane showing rounded shape while cells from the other group grew in multi-planes and exhibited irregular shape. The mRNA expression ratio of collagen type II to I was 13.2 ± 7.5 in cells isolated from cartilage pre-treated with pronase E, indicating a typical chondrocyte phenotype. Conclusions Collagenase IA was not sufficient in establishing primary human chondrocyte culture. Cartilage must be treated with pronase E prior to collagenase IA application.
Collapse
Affiliation(s)
- Jiamin Mao
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Lexi Huang
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yiyang Ding
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xiaoyu Ma
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Quanming Wang
- Department of Orthopaedic Surgery, Jiangnan University Affiliated Hospital, Wuxi, Jiangsu, China
| | - Lei Ding
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Takács R, Póliska S, Juhász T, Barna KB, Matta C. Isolation of High-Quality Total RNA from Small Animal Articular Cartilage for Next-Generation Sequencing. Curr Protoc 2023; 3:e692. [PMID: 36880775 DOI: 10.1002/cpz1.692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Articular cartilage is characterized by a low density of chondrocytes surrounded by an abundant extracellular matrix (ECM) consisting of a dense mixture of collagens, proteoglycans, and glycosaminoglycans. Due to its low cellularity and high proteoglycan content, it is particularly challenging to extract high-quality total RNA suitable for sensitive high-throughput downstream applications such as RNA sequencing (RNA-Seq). Available protocols for high-quality RNA isolation from articular chondrocytes are inconsistent, resulting in suboptimal yield and compromised quality. This poses a significant difficulty in the application of RNA-Seq to study the cartilage transcriptome. Current protocols rely either on dissociation of cartilage ECM by collagenase digestion or pulverizing cartilage using various methods prior to RNA extraction. However, protocols for cartilage processing vary significantly depending on the species and source of cartilage within the body. Protocols for isolating RNA from human or large mammal (e.g., horse or cattle) cartilage samples are available, but this is not the case for chicken cartilage, despite the species being extensively used in cartilage research. Here, we present two improved RNA isolation protocols based on pulverization of fresh articular cartilage using a cryogenic mill or on enzymatic digestion using 1.2% (w/v) collagenase II. Our protocols optimize the collection and tissue processing steps to minimize RNA degradation and enhance RNA purity. Our results show that RNA purified from chicken articular cartilage using these methods has appropriate quality for RNA-Seq experiments. The procedure is applicable for RNA extraction from cartilage from other species such as dog, cat, sheep, and goat. The workflow for RNA-Seq analysis is also described here. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extraction of total RNA from pulverized chicken articular cartilage Alternate Protocol: Extraction of total RNA from collagen-digested articular cartilage Support Protocol: Dissection of chicken articular cartilage from the knee joint Basic Protocol 2: RNA sequencing of total RNA from chicken articular cartilage.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina B Barna
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Matta
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Shen P, Wu P, Maleitzke T, Reisener MJ, Heinz GA, Heinrich F, Durek P, Gwinner C, Winkler T, Pumberger M, Perka C, Mashreghi MF, Löhning M. Optimization of chondrocyte isolation from human articular cartilage to preserve the chondrocyte transcriptome. Front Bioeng Biotechnol 2022; 10:1046127. [DOI: 10.3389/fbioe.2022.1046127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
The isolation of chondrocytes from human articular cartilage for single-cell RNA sequencing requires extensive and prolonged tissue digestion at 37 C. Modulations of the transcriptional activity likely take place during this period such that the transcriptomes of isolated human chondrocytes no longer match their original status in vivo. Here, we optimized the human chondrocyte isolation procedure to maximally preserve the in vivo transcriptome. Cartilage tissues were transferred into a hypoxia chamber (4% O2) immediately after being removed from OA patients and minced finely. Collagenase II at concentrations of 0.02%, 0.1%, 0.25%, 0.5%, 1%, and 2% was applied for 0.5, 1, 2, 4, and 18 h to digest the minced tissue. Actinomycin D (ActD) was added to test its capacity in stabilizing the transcriptome. Cell yield, viability, cell size, and transcriptome were determined using counter chamber, flow cytometry, and RNA sequencing (RNA-seq). Collagenase II at 2% concentration released small chondrocytes from cartilage matrix during the first digestion hour and started to release large cells thereafter, reaching a complete release at 4 h. During 4-h digestions, collagenase II at 2% and 1% but not at lower concentrations yielded maximal release also of the large chondrocyte population. RNA-seq analysis revealed that a 4-h digestion period with 1% or 2% collagenase II plus Actinomycin D optimally preserved the transcriptome. Thus, this study provides an isolation protocol for single chondrocytes from human articular cartilage optimized for transcriptome preservation and RNA-seq analysis.
Collapse
|
5
|
Wan L, Cheng X, Searleman AC, Ma YJ, Wong JH, Meyer RS, Du J, Tang G, Chang EY. Evaluation of enzymatic proteoglycan loss and collagen degradation in human articular cartilage using ultrashort echo time-based biomarkers: A feasibility study. NMR IN BIOMEDICINE 2022; 35:e4664. [PMID: 34904305 PMCID: PMC9042587 DOI: 10.1002/nbm.4664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/02/2023]
Abstract
The objective of the current study was to investigate the feasibility of quantitative 3D ultrashort echo time (UTE)-based biomarkers in detecting proteoglycan (PG) loss and collagen degradation in human cartilage. A total of 104 cartilage samples were harvested for a trypsin digestion study (n = 44), and a sequential trypsin and collagenase digestion study (n = 60), respectively. Forty-four cartilage samples were randomly divided into a trypsin digestion group (tryp group) and a control group (phosphate-buffered saline [PBS] group) (n = 22 for each group) for the trypsin digestion experiment. The remaining 60 cartilage samples were divided equally into four groups (n = 15 for each group) for sequential trypsin and collagenase digestion, including PBS + Tris (incubated in PBS, then Tris buffer solution), PBS + 30 U col (incubated in PBS, then 30 U/ml collagenase [30 U col] with Tris buffer solution), tryp + 30 U col (incubated in trypsin solution, then 30 U/ml collagenase with Tris buffer solution), and tryp + Tris (incubated in trypsin solution, then Tris buffer solution). The 3D UTE-based MRI biomarkers included T1 , multiecho T2 *, adiabatic T1ρ (AdiabT1ρ ), magnetization transfer ratio (MTR), and modeling of macromolecular proton fraction (MMF). For each cartilage sample, UTE-based biomarkers (T1 , T2 *, AdiabT1ρ , MTR, and MMF) and sample weight were evaluated before and after treatment. PG and hydroxyproline assays were performed. Differences between groups and correlations were assessed. All the evaluated biomarkers were able to differentiate between healthy and degenerated cartilage in the trypsin digestion experiment, but only T1 and AdiabT1ρ were significantly correlated with the PG concentration in the digestion solution (p = 0.004 and p = 0.0001, respectively). In the sequential digestion experiment, no significant differences were found for T1 and AdiabT1ρ values between the PBS + Tris and PBS + 30 U col groups (p = 0.627 and p = 0.877, respectively), but T1 and AdiabT1ρ values increased significantly in the tryp + Tris (p = 0.031 and p = 0.024, respectively) and tryp + 30 U col groups (both p < 0.0001). Significant decreases in MMF and MTR were found in the tryp + 30 U col group compared with the PBS + Tris group (p = 0.002 and p = 0.001, respectively). It was concluded that AdiabT1ρ and T1 have the potential for detecting PG loss, while MMF and MTR are promising for the detection of collagen degradation in articular cartilage, which could facilitate earlier, noninvasive diagnosis of osteoarthritis.
Collapse
Affiliation(s)
- Lidi Wan
- Department of Radiology, University of California, San Diego, CA
- Department of Radiology, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xin Cheng
- Department of Radiology, University of California, San Diego, CA
- Division of Histology and Embryology, Jinan University, Guangzhou, China
| | | | - Ya-Jun Ma
- Department of Radiology, University of California, San Diego, CA
| | - Jonathan H. Wong
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| | - R. Scott Meyer
- Orthopaedic Surgery Service, VA San Diego Healthcare System, San Diego, CA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| | - Guangyu Tang
- Department of Radiology, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
6
|
Yan Y, Fu R, Liu C, Yang J, Li Q, Huang RL. Sequential Enzymatic Digestion of Different Cartilage Tissues: A Rapid and High-Efficiency Protocol for Chondrocyte Isolation, and Its Application in Cartilage Tissue Engineering. Cartilage 2021; 13:1064S-1076S. [PMID: 34775800 PMCID: PMC8804790 DOI: 10.1177/19476035211057242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The classic chondrocyte isolation protocol is a 1-step enzymatic digestion protocol in which cartilage samples are digested in collagenase solution for a single, long period. However, this method usually results in incomplete cartilage dissociation and low chondrocyte quality. In this study, we aimed to develop a rapid, high-efficiency, and flexible chondrocyte isolation protocol for cartilage tissue engineering. DESIGN Cartilage tissues harvested from rabbit ear, rib, septum, and articulation were minced and subjected to enzymatic digestion using the classic protocol or the newly developed sequential protocol. In the classic protocol, cartilage fragments were subjected to one 12-hour digestion. In the sequential protocol, cartilage fragments were sequentially subjected to 2-hour first digestion, followed by two 3-hour digestions. The collected cells were then subjected to analyses of cell-yield efficiency, viability, proliferation, phenotype, and cartilage matrix synthesis capacity. RESULTS Overall, the sequential protocol exhibited higher cell-yield efficiency than the classic protocol for the 4 cartilage types. The cells harvested from the second and third digestions demonstrated higher cell viability, more proliferative activity, a better chondrocyte phenotype, and a higher cartilage-specific matrix synthesis ability than those harvested from the first digestion and after the classic 1-step protocol. CONCLUSIONS The sequential protocol is a rapid, flexible, high-efficiency chondrocyte isolation protocol for different cartilage tissues. We recommend using this protocol for chondrocyte isolation, and in particular, the cells obtained after the subsequent 3-hour sequential digestions should be used for chondrocyte-based therapy.
Collapse
Affiliation(s)
- Yuxin Yan
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China,Department of Plastic and Burn Surgery,
West China Hospital, Sichuan University, Shanghai, China
| | - Jing Yang
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China,Qingfeng Li, Department of Plastic and
Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
7
|
Crispim JF, Ito K. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels. Acta Biomater 2021; 128:236-249. [PMID: 33894352 DOI: 10.1016/j.actbio.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022]
Abstract
Regenerative therapies for articular cartilage are currently clinically available. However, they are associated with several drawbacks that require resolution. Optimizing chondrocyte expansion and their assembly, can reduce the time and costs of these therapies and more importantly increase their clinical success. In this study, cartilage organoids were quickly mass produced from bovine chondrocytes with a new suspension expansion protocol. This new approach led to massive cell proliferation, high viability and the self-assembly of organoids. These organoids were composed of collagen type II, type VI, glycosaminoglycans, with Sox9 positive cells, embedded in a pericellular and interterritorial matrix similarly to hyaline cartilage. With the goal of producing large scale tissues, we then encapsulated these organoids into alginate hydrogels with different viscoelastic properties. Elastic hydrogels constrained the growth and fusion of the organoids inhibiting the formation of a tissue. In contrast, viscoelastic hydrogels allowed the growth and fusion of the organoids into a homogenous tissue that was rich in collagen type II and glycosaminoglycans. The encapsulation of organoids to produce in vitro neocartilage also proved to be superior to the conventional method of encapsulating 2D expanded chondrocytes. This study describes a multimodal approach that involves chondrocyte expansion, organoid formation and their assembly into neohyaline-cartilage which proved to be superior to the current standard approaches used in cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: In this manuscript, we describe a new and simple methodology to quickly mass produce self-assembling cartilage organoids. Due to their matrix content and structure similarities with native cartilage, these organoids on their own have the potential to revolutionize cartilage research and the manner in which we study signaling pathways, disease progression, tissue engineering, drug development, etc. Furthermore, these organoids and their fast mass production were combined with a key relatively ignored hydrogel characteristic, viscoelasticity, to demonstrate their fusion into a neo-tissue. This has the potential to open the door for large scale cartilage regeneration such as for entire joint surfaces.
Collapse
Affiliation(s)
- João F Crispim
- Orthopaedic Biomechanics group, Regenerative Engineering & Materials cluster, Dept. of Biomedical Engineering and the Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands.
| | - Keita Ito
- Orthopaedic Biomechanics group, Regenerative Engineering & Materials cluster, Dept. of Biomedical Engineering and the Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands.
| |
Collapse
|
8
|
Xiong L, Cui M, Zhou Z, Wu M, Wang Q, Song H, Ding L. Primary culture of chondrocytes after collagenase IA or II treatment of articular cartilage from elderly patients undergoing arthroplasty. ASIAN BIOMED 2021; 15:91-99. [PMID: 37551401 PMCID: PMC10388763 DOI: 10.2478/abm-2021-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Joint replacement surgery provides articular cartilage samples for chondrocyte isolation. To our knowledge, the effect of the collagenase type on releasing of chondrocytes from the extracellular matrix of cartilage is not reported. Objectives To determine whether cartilage digested with collagenase IA yielded more chondrocytes than that digested with collagenase II and determine whether chondrocytes isolated with collagenase IA could be cultured in vitro. Methods Cartilage slices collected from 18 elderly patients who received joint replacement surgery (16 hips, 2 knees) were digested sequentially with 0.4% pronase E and 0.02% collagenase IA, or with 0.15% collagenase II alone, or sequentially with 0.4% pronase E and 0.02% collagenase II. We compared cell yield from each method. Cell viability by the most effective method was calculated and plotted. The morphology of cultured monolayer chondrocytes was recorded with a light microscope. Results Sequential digestion with pronase E and collagenase IA yielded 2566 ± 873 chondrocytes per mg wet cartilage, which was more effective than the other isolation methods (P = 0.018). The average chondrocyte viability could reach 84% ± 8% (n = 11). Light microscopic images showed typical chondrocyte morphology in monolayer cultures. Conclusion Sequential digestion of human articular cartilage with pronase E and collagenase IA was more effective than collagenase II alone or collagenase II combined with pronase E for releasing chondrocytes from extracellular matrix of cartilage. Chondrocytes isolated with this method could be maintained in monolayer cultures for at least 2 passages with unaltered morphology.
Collapse
Affiliation(s)
- Liuliu Xiong
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, Jiangsu214122, China
| | - Meng Cui
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, Jiangsu214122, China
| | - Ziye Zhou
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, Jiangsu214122, China
| | - Minchen Wu
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, Jiangsu214122, China
| | - Quanming Wang
- Department of Orthopaedic Surgery, Jiangnan University Affiliated Hospital, Jiangsu214062, China
| | - Haiyan Song
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin150001, China
| | - Lei Ding
- Department of Basic Medical Sciences, Jiangnan University Wuxi College of Medicine, Jiangsu214122, China
| |
Collapse
|
9
|
Kilic P, Gurcan C, Gurman G, Yilmazer A. Understanding factors affecting human chondrocyte culturing: an experimental study. Cell Tissue Bank 2020; 21:585-596. [PMID: 32671509 DOI: 10.1007/s10561-020-09847-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
Over the years, surgical strategies have been developed in hope of full regeneration of the injured cartilage. In our study, we aimed to develop an optimized chondrocyte culture isolation technique as an active ingredient of a standardized autologous chondrocte implantation product, which is able to maintain the phenotype along with the molecular features of the cartilage. We compared different enzymes, which suggested optimal performance with collagenase type II at 5 mg/ml concentration. Thereafter, we observed that COL2 and GAG expression is substantially reduced with passaging. There was a need to omit passaging to reach the optimal isolation method. We then tested various growth factors and media in order to maintain the natural character of chondrocytes. Our study also suggested the highest COL2 and GAG expressions with the highest recovery in the presence of Advanced DMEM. Autologous chondrocyte implantation manufacturing approval was recently received from the national competent authority, making it possible to utilize the process engineering protocol developed with this study at our Tissue and Cell Manufacturing Center as a part of the autologous chondrocyte implantation manufacturing standard operation procedure (SOP).
Collapse
Affiliation(s)
- Pelin Kilic
- Stem Cell Institute, Ankara University, Cevizlidere Mah., Ceyhun Atuf Kansu Cd. No: 169, 06520, Balgat, Ankara, Turkey.
| | - Cansu Gurcan
- Stem Cell Institute, Ankara University, Cevizlidere Mah., Ceyhun Atuf Kansu Cd. No: 169, 06520, Balgat, Ankara, Turkey
| | - Gunhan Gurman
- Stem Cell Institute, Ankara University, Cevizlidere Mah., Ceyhun Atuf Kansu Cd. No: 169, 06520, Balgat, Ankara, Turkey.,School of Medicine, Department of Hematology, Ankara University, Ankara, Turkey
| | - Acelya Yilmazer
- Stem Cell Institute, Ankara University, Cevizlidere Mah., Ceyhun Atuf Kansu Cd. No: 169, 06520, Balgat, Ankara, Turkey. .,School of Engineering, Department of Biomedical Engineering, Ankara University, Ankara, Turkey.
| |
Collapse
|
10
|
Matsushita R, Nakasa T, Ishikawa M, Tsuyuguchi Y, Matsubara N, Miyaki S, Adachi N. Repair of an Osteochondral Defect With Minced Cartilage Embedded in Atelocollagen Gel: A Rabbit Model. Am J Sports Med 2019; 47:2216-2224. [PMID: 31206306 DOI: 10.1177/0363546519854372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is often performed for large cartilage defects. Because this technique has several disadvantages, including the need for second-stage surgery, cartilage repair using minced cartilage has been suggested. However, this technique could be improved using 3-dimensional scaffolds. PURPOSE To examine the ability of chondrocyte migration and proliferation from minced cartilage in atelocollagen gel in vitro and evaluate the repairable potential of minced cartilage embedded in atelocollagen gel covered with a periosteal flap in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS Minced cartilage or isolated chondrocytes from rabbits were embedded in atelocollagen gel and cultured for 3 weeks. Chondrocyte proliferation and matrix production were evaluated in vitro. An osteochondral defect at the trochlear groove was created in 56 rabbits, which were divided into 4 groups. The defect was left empty (defect group), filled with allogenic minced cartilage (minced cartilage group), filled with isolated allogenic chondrocytes embedded in atelocollagen gel (ACI group), or filled with atelocollagen gel (atelocollagen with periosteal flap group). At 4, 12, and 24 weeks after surgery, repair of the defect was evaluated in these 4 groups. RESULTS In vitro, the number of chondrocytes and abundant matrix on the surface of the gel significantly increased in the minced cartilage group compared with the ACI group (P < .05). In vivo, the minced cartilage and ACI groups showed good cartilage repair compared with the empty defect and atelocollagen/periosteal flap groups (P < .05); there was no significant difference in the Pineda score between the minced cartilage and ACI groups. CONCLUSION Minced cartilage in atelocollagen gel had good chondrocyte migration and proliferation abilities in vitro, and osteochondral defects were well repaired by implanting minced cartilage embedded in the atelocollagen gel in vivo. Implantation of minced cartilage embedded in atelocollagen gel showed good cartilage repair equivalent to ACI. CLINICAL RELEVANCE Implantation of minced cartilage embedded in atelocollagen gel as a 1-step procedure has outcomes similar to those of ACI but is cheaper and more convenient than ACI.
Collapse
Affiliation(s)
- Ryosuke Matsushita
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Yusuke Tsuyuguchi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Norimasa Matsubara
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| |
Collapse
|
11
|
Mantripragada VP, Bova WA, Boehm C, Piuzzi NS, Obuchowski NA, Midura RJ, Muschler GF. Progenitor cells from different zones of human cartilage and their correlation with histopathological osteoarthritis progression. J Orthop Res 2018; 36:1728-1738. [PMID: 29240251 DOI: 10.1002/jor.23829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Cell-based therapies development for the treatment of osteoarthritis (OA) requires an understanding of the disease progression and attributes of the cells resident in cartilage. This study focused on quantitative assessment of the concentration and biological potential of stem and progenitor cells resident in different zones of cartilage displaying macroscopic Outerbridge grade 1-2 OA, and their correlation with OA progression based on established histologic scoring system. Lateral femoral condyles were collected from 15 patients with idiopathic OA and varus knees undergoing total knee arthroplasty. Superficial(Csp , top ∼ 500 µm) and deep cartilage(Cdp ) was separated. Chondrogenic Connective Tissue Progenitors (CTP-C) were assayed by standardized Colony-Forming-Unit assay using automated image analysis (ColonyzeTM ) based on ASTM standard F-2944-12. Cell concentration (cells/mg) was significantly greater in Csp (median: 7,000; range: 3,440-17,600) than Cdp (median: 5,340; range: 3,393-9,660), p = 0.039. Prevalence (CTPs/million cells) was not different between Csp (median: 1,274; range: 0-3,898) and Cdp (median:1,365; range:0-6,330), p = 0.42. In vitro performance of CTP-C progeny varied widely within and between patients, manifest by variation in colony size and morphology. Mean histopathological Mankin score was 4.7 (SD = 1.2), representing mild to moderate OA. Tidemark breach by blood vessels was associated with lower Csp cell concentration (p = 0.02). Matrix degradation was associated with lower Cdp cell and CTP-C concentration (p = 0.015 and p = 0.095, respectively), independent of articular surface changes. These findings suggest that the initiation of OA may occur in either superficial or deep zones. The pathological changes affect CTP-Cs in Csp and Cdp cartilage zones differently. The heterogeneity among the available CTP-Cs in Csp and Cdp suggests performance-based selection to optimize cell-sourcing strategies for therapy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1728-1738, 2018.
Collapse
Affiliation(s)
- Venkata P Mantripragada
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195
| | - Wesley A Bova
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195
| | - Cynthia Boehm
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195
| | - Nicolas S Piuzzi
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195.,Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, 44195.,Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, 1182, Argentina
| | - Nancy A Obuchowski
- Department of Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Ronald J Midura
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195
| | - George F Muschler
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, 44195.,Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, 44195
| |
Collapse
|