1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Nishimaki K, Kaibuchi N, Washio K, Yamato M. Application of mesenchymal stromal cell sheets to prevent medication-related osteonecrosis of the jaw with titanium implants in rats. Odontology 2024; 112:938-949. [PMID: 38367068 DOI: 10.1007/s10266-024-00900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an intractable adverse event. Dental implants are one of the triggering factors of MRONJ, and implant therapy with low MRONJ risk is required. This study aimed to investigate a rat model of MRONJ induced by extraoral placement of titanium materials and the use of mesenchymal stromal cell (MSCs) sheets to prevent MRONJ. Eight-week-old male rats were administered zoledronate and dexamethasone thrice weekly until killing. A week after drug initiation, a titanium screw and a plate were placed on the left buccal side of the mandible. Allogeneic bone marrow-derived MSC sheets were co-grafted with the titanium plates in the MSC sheet ( +) group. Six weeks after titanium placement, the rats were killed, and their excised mandibular bones were subjected to micro-computed tomography (CT) analysis. Histological analysis was performed after the titanium implants were removed. Empty lacunae visualized on hematoxylin and eosin staining were used as evidence of bone necrosis. Bone necrosis was reduced in the MSC sheet ( +) group. Tartrate-resistant acid phosphatase (TRAP) staining revealed a decreased number of TRAP-positive cells in areas with a large number of empty lacunae in the MSC sheet (-) group. Micro-CT analyses demonstrated that the bone volume fraction (BV/TV) was not significantly different between the MSC sheet (-) and ( +) groups. We conclude that MRONJ can be triggered by a titanium placement in rats, and grafting of allogeneic MSC sheets has the potential to prevent MRONJ.
Collapse
Affiliation(s)
- Kazuhiro Nishimaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Nobuyuki Kaibuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
3
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Kaibuchi N, Iwata T, Koga YK, Okamoto T. Novel Cell Therapy Using Mesenchymal Stromal Cell Sheets for Medication-Related Osteonecrosis of the Jaw. Front Bioeng Biotechnol 2022; 10:902349. [PMID: 35646846 PMCID: PMC9133503 DOI: 10.3389/fbioe.2022.902349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Despite medication-related osteonecrosis of the jaw (MRONJ) being first reported in 2003, the optimal treatment and prevention modalities for MRONJ are not clear. As a result, dentistry, oral surgery, and departments involved in the treatment of cancer and bone diseases are struggling with the management of MRONJ. Several cases of MRONJ cannot be managed by conventional treatment strategies recommended in various position papers. Therefore, studies have been conducted to investigate the efficacy of novel therapies for MRONJ. However, the optimal treatment is unknown. Several cell therapies including autologous cell transplantation have been reported for MRONJ. Although the efficacy of cell therapy for MRONJ has been demonstrated, large, statistically accurate clinical trials are lacking. We have been investigating the efficacy of MRONJ treatment using mesenchymal stromal cell (MSC) sheets since 2013 and confirmed its efficacy through various experiments, wherein MSC sheets were transplanted in model rats and beagle dogs with MRONJ-like lesions. Based on these results, we are planning to conduct a clinical trial of MRONJ therapy using periodontal ligament-derived MSC sheets.
Collapse
Affiliation(s)
- Nobuyuki Kaibuchi
- Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University School of Medicine, Shinjuku, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), Tokyo, Japan
- *Correspondence: Nobuyuki Kaibuchi,
| | - Takanori Iwata
- Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University School of Medicine, Shinjuku, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoko Kawase Koga
- Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University School of Medicine, Shinjuku, Japan
| | - Toshihiro Okamoto
- Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University School of Medicine, Shinjuku, Japan
| |
Collapse
|
5
|
Aguirre JI, Castillo EJ, Kimmel DB. Preclinical models of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116184. [PMID: 34520898 PMCID: PMC8743993 DOI: 10.1016/j.bone.2021.116184] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe adverse event affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). pARs, including nitrogen-containing bisphosphonates (N-BPs; e.g., zoledronic acid, alendronate) and anti-RANKL antibodies (e.g., denosumab), are used to manage bone metastases in patients with cancer or to prevent fragility fractures in patients with osteoporosis. Though significant advances have been made in understanding MRONJ, its pathophysiology is still not fully elucidated. Multiple species have been used in preclinical MRONJ research, including the rat, mouse, rice rat, rabbit, dog, sheep, and pig. Animal research has contributed immensely to advancing the MRONJ field, particularly, but not limited to, in developing models and investigating risk factors that were first observed in humans. MRONJ models have been developed using clinically relevant doses of systemic risk factors, like N-BPs, anti-RANKL antibodies, or AgIs. Specific local oral risk factors first noted in humans, including tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection, etc.), were then added. Research in rodents, particularly the rat, and, to some extent, the mouse, across multiple laboratories, has contributed to establishing multiple relevant and complementary preclinical models. Models in larger species produced accurate clinical and histopathologic outcomes suggesting a potential role for confirming specific crucial findings from rodent research. We view the current state of animal models for MRONJ as good. The rodent models are now reliable enough to produce large numbers of MRONJ cases that could be applied in experiments testing treatment modalities. The course of MRONJ, including stage 0 MRONJ, is characterized well enough that basic studies of the molecular or enzyme-level findings in different MRONJ stages are possible. This review provides a current overview of the existing models of MRONJ, their more significant features and findings, and important instances of their application in preclinical research.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
6
|
Kaibuchi N, Hoshi K, Yamazaki A, Miyamoto-Sangu N, Akagi Y, Okamoto T. The progress of medication-related osteonecrosis of the jaw with conservative initial treatment: A 12-year retrospective study of 129 patients. Bone Rep 2021; 14:101072. [PMID: 33997149 PMCID: PMC8100074 DOI: 10.1016/j.bonr.2021.101072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
This retrospective study aimed to examine the course and prognosis of medication-related osteonecrosis of the jaw (MRONJ) initially treated conservatively and the effects of various factors affecting treatment outcomes. We evaluated 129 patients with MRONJ between January 2008 and December 2018 at a university hospital. The factors examined included sex, age, stage of MRONJ (1-3), type of bone modifying agents (bisphosphonate or denosumab), primary disease (osteoporosis or malignant tumor), medical history (diabetes and rheumatoid arthritis), use of corticosteroids, the trigger of MRONJ (teeth extraction or others), and separation of sequestrum, using logistic regression analysis. Patients with MRONJ were treated conservatively as the initial treatment in accordance with the position paper of the American Association of Oral and Maxillofacial Surgeons. Of the 129 patients, 59 (45.7%) were cured, and the condition of 70 (54.3%) remained unchanged or worsened. The overall cure rates at 12, 36, and 60 months were 25.8%, 50.8%, and 72.4% respectively. The cure rate of stage 1 was lower than that of stages 2 and 3 at 80 months. In multivariate analysis, it was found that 37 (64.9%) of 57 patients with osteoporosis as a primary disease were cured (odds ratio [OR], 7.7; 95% confidence interval [CI], 2.4-24.4). In addition, 40 (69.0%) of 58 patients with separation of sequestrum were cured (OR, 8.9; 95% CI, 3.4-23.5). The cure rate was significantly higher in patients with osteoporosis than in those with cancer when the treatment outcomes of primary disease were compared using the Kaplan-Meier method (p < 0.01). It was also significantly higher in patients who had separation of sequestrum than in those who did not (p < 0.05). Our results suggest that primary disease and separation of sequestrum were associated with favorable outcomes in patients with MRONJ initially treated conservatively. MRONJ had a poor prognosis with conventional treatment carried according to the stage of the disease. This was especially prominent when conservative treatment was employed for mild cases.
Collapse
Affiliation(s)
- Nobuyuki Kaibuchi
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keika Hoshi
- National Institute of Public Health, Center for Public Health Informatics, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.,Department of Hygiene, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ayame Yamazaki
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Noriko Miyamoto-Sangu
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuichi Akagi
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Toshihiro Okamoto
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
7
|
Akiyama Y. Design of Temperature-Responsive Cell Culture Surfaces for Cell Sheet Engineering. CYBORG AND BIONIC SYSTEMS 2021; 2021:5738457. [PMID: 36285144 PMCID: PMC9494729 DOI: 10.34133/2021/5738457] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
Temperature-responsive cell culture surfaces, which modulate cell attachment/detachment characteristics with temperature, have been used to fabricate cell sheets. Extensive study on fabrication of cell sheet with the temperature-responsive cell culture surface, manipulation, and transplantation of the cell sheet has established the interdisciplinary field of cell sheet engineering, in which engineering, biological, and medical fields closely collaborate. Such collaboration has pioneered cell sheet engineering, making it a promising and attractive technology in tissue engineering and regenerative medicine. This review introduces concepts of cell sheet engineering, followed by designs for the fabrication of various types of temperature-responsive cell culture surfaces and technologies for cell sheet manipulation. The development of various methods for the fabrication of temperature-responsive cell culture surfaces was also summarized. The availability of cell sheet engineering for the treatment and regeneration of damaged human tissue has also been described, providing examples of the clinical application of cell sheet transplantation in humans.
Collapse
Affiliation(s)
- Y. Akiyama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, Tokyo, Japan
| |
Collapse
|
8
|
Giudice A, Antonelli A, Chiarella E, Baudi F, Barni T, Di Vito A. The Case of Medication-Related Osteonecrosis of the Jaw Addressed from a Pathogenic Point of View. Innovative Therapeutic Strategies: Focus on the Most Recent Discoveries on Oral Mesenchymal Stem Cell-Derived Exosomes. Pharmaceuticals (Basel) 2020; 13:ph13120423. [PMID: 33255626 PMCID: PMC7760182 DOI: 10.3390/ph13120423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Bisphosphonates-related osteonecrosis of the jaw (BRONJ) was firstly reported by Marx in 2003. Since 2014, the term medication-related osteonecrosis of the jaw (MRONJ) is recommended by the American Association of Oral and Maxillofacial Surgeons (AAOMS). Development of MRONJ has been associated to the assumption of bisphosphonates but many MRONJ-promoting factors have been identified. A strong involvement of immunity components has been suggested. Therapeutic intervention includes surgical and non-surgical treatments, as well as regenerative medicine procedures for the replacement of the lost tissues. The literature confirms that the combination of mesenchymal stem cells (MSCs), biomaterials and local biomolecules can support the regeneration/repair of different structures. In this review, we report the major open topics in the pathogenesis of MRONJ. Then, we introduce the oral tissues recognized as sources of MSCs, summing up in functional terms what is known about the exosomes release in physiological and pathological conditions.
Collapse
Affiliation(s)
- Amerigo Giudice
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.G.); (A.A.)
| | - Alessandro Antonelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (A.G.); (A.A.)
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
| | - Francesco Baudi
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
| | - Tullio Barni
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (E.C.); (F.B.); (T.B.)
- Correspondence:
| |
Collapse
|
9
|
Higuchi A, Hirad AH, Kumar SS, Munusamy MA, Alarfaj AA. Thermoresponsive surfaces designed for the proliferation and differentiation of human pluripotent stem cells. Acta Biomater 2020; 116:162-173. [PMID: 32911107 DOI: 10.1016/j.actbio.2020.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
Thermoresponsive surfaces enable the detachment of cells or cell sheets by decreasing the temperature of the surface when harvesting the cells. However, human pluripotent stem cells (hPSCs), such as embryonic stem cells and induced pluripotent stem cells, cannot be directly cultured on a thermoresponsive surface; hPSCs need a specific extracellular matrix to bind to the integrin receptors on their surfaces. We prepared a thermoresponsive surface by using poly(N-isopropylacrylamide-co-butylacrylate) and recombinant vitronectin to provide an optimal coating concentration for the hPSC culture. hPSCs can be cultured on the same thermoresponsive surface for 5 passages by partial detachment of the cells from the surface by decreasing the temperature for 30 min; then, the remaining hPSCs were subsequently cultured on the same dishes following the addition of new cultivation media. The detached cells, even after continual culture for five passages, showed high pluripotency, the ability to differentiate into cells derived from the 3 germ layers and the ability to undergo cardiac differentiation.
Collapse
|
10
|
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 2020; 113:63-83. [PMID: 32561471 DOI: 10.1016/j.actbio.2020.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cell sheet technology has remained quite popular among tissue engineering techniques over the last several years. Meanwhile, there is an apparent trend in modern scientific research towards combining different approaches and strategies. Accordingly, a large body of work has arisen where cell sheets are used not as separate structures, but in combination with scaffolds as supporting constructions. The aim of this review is to analyze the intersection of these two vast areas of tissue engineering described in the literature mainly within the last five years. Some practical and technical details are emphasized to provide information that can be useful in research design and planning. The first part of the paper describes the general issues concerning the use of combined technology, its advantages and limitations in comparison with those of other tissue engineering approaches. Next, the detailed literature analysis of in vivo studies aimed at the regeneration of different tissues is performed. A significant part of this section concerns bone regeneration. In addition to that, other connective tissue structures, including articular cartilage and fibrocartilage, ligaments and tendons, and some soft tissues are discussed. STATEMENT OF SIGNIFICANCE: This paper describes the intersection of two technologies used in designing of tissue-engineered constructions for regenerative medicine: cell sheets as extracellular matrix-rich structures and supporting scaffolds as essentials in tissue engineering. A large number of reviews are devoted to each of these scientific problems. However, the solution of complex problems of tissue engineering requires an integrated approach that includes both three-dimensional scaffolds and cell sheets. This manuscript serves as a description of advantages and limitations of this method, its use in regeneration of bones, connective tissues and soft tissues and some other details.
Collapse
Affiliation(s)
- Irina M Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St., Moscow, Russia; FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 125993, 2/1-1 Barrikadnaya St., Moscow, Russia
| | - Viktoria S Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia
| | - Denis V Butnaru
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, 108840, 2 Pionerskaya st., Troitsk, Moscow, Russia; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin st., Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1‑3, Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
11
|
De Santis GC, de Macedo LD, Orellana MD, Innocentini LMAR, Ferrari TC, Ricz HMA, Caruso SR, Fernandes TR, Covas DT. Mesenchymal stromal cells administration for osteonecrosis of the jaw caused by bisphosphonate: report of two cases. Acta Oncol 2020; 59:789-792. [PMID: 32079438 DOI: 10.1080/0284186x.2020.1730004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gil Cunha De Santis
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leandro Dorigan de Macedo
- Dentistry and Stomatology Division, Hospital das Clínicas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maristela Delgado Orellana
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Tatiane Cristina Ferrari
- Dentistry and Stomatology Division, Hospital das Clínicas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hilton Marcos Alves Ricz
- Dentistry and Stomatology Division, Hospital das Clínicas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sâmia Rigotto Caruso
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taísa Risque Fernandes
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Wan JT, Sheeley DM, Somerman MJ, Lee JS. Mitigating osteonecrosis of the jaw (ONJ) through preventive dental care and understanding of risk factors. Bone Res 2020; 8:14. [PMID: 32195012 PMCID: PMC7064532 DOI: 10.1038/s41413-020-0088-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well established that alterations in phosphate metabolism have a profound effect on hard and soft tissues of the oral cavity. The present-day clinical form of osteonecrosis of the jaw (ONJ) was preceded by phosphorus necrosis of the jaw, ca. 1860. The subsequent removal of yellow phosphorus from matches in the early 20th century saw a parallel decline in "phossy jaw" until the early 2000s, when similar reports of unusual jaw bone necrosis began to appear in the literature describing jaw necrosis in patients undergoing chemotherapy and concomitant steroid and bisphosphonate treatment. Today, the potential side effect of ONJ associated with medications that block osteoclast activity (antiresorptive) is well known, though the mechanism remains unclear and the management and outcomes are often unsatisfactory. Much of the existing literature has focused on the continuing concerns of appropriate use of bisphosphonates and other antiresorptive medications, the incomplete or underdeveloped research on ONJ, and the use of drugs with anabolic potential for treatment of osteoporosis. While recognizing that ONJ is a rare occurrence and ONJ-associated medications play an important role in fracture risk reduction in osteoporotic patients, evidence to date suggests that health care providers can lower the risk further by dental evaluations and care prior to initiating antiresorptive therapies and by monitoring dental health during and after treatment. This review describes the current clinical management guidelines for ONJ, the critical role of dental-medical management in mitigating risks, and the current understanding of the effects of predominantly osteoclast-modulating drugs on bone homeostasis.
Collapse
Affiliation(s)
- Jason T. Wan
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Douglas M. Sheeley
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Martha J. Somerman
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
- Laboratory for Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | - Janice S. Lee
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
13
|
Chung MJ, Park S, Son JY, Lee JY, Yun HH, Lee EJ, Lee EM, Cho GJ, Lee S, Park HS, Jeong KS. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use. Cell Cycle 2019; 18:2954-2971. [PMID: 31505996 DOI: 10.1080/15384101.2019.1664224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In previous work, we established an equine induced pluripotent stem cell line (E-iPSCs) from equine adipose-derived stem cells (ASCs) using a lentiviral vector encoding four transcription factors: Oct4, Sox2, Klf4, and c-Myc. In the current study, we attempted to differentiate these established E-iPSCs into mesenchymal stem cells (MSCs) by serial passaging using MSC-defined media for stem cell expansion. Differentiation of the MSCs was confirmed by analyzing expression levels of the MSC surface markers CD44 and CD29, and the pluripotency markers Nanog and Oct4. Results indicated that the E-iPSC-derived MSCs (E-iPSC-MSCs) retained the characteristics of MSCs, including the ability to differentiate into chondrogenic, osteogenic, or myogenic lineages. E-iPSC-MSCs were rendered suitable for therapeutic use by inhibiting immune rejection through exposure to transforming growth factor beta 2 (TGF-β2) in culture, which down-regulated the expression of major histocompatibility complex class I (MHC class I) proteins that cause immune rejection if they are incompatible with the MHC antigen of the recipient. We reported 16 cases of E-iPSC-MSC transplantations into injured horses with generally positive effects, such as reduced lameness and fraction lines. Our findings indicate that E-iPSC-MSCs can demonstrate MSC characteristics and be safely and practically used in the treatment of musculoskeletal injuries in horses.
Collapse
Affiliation(s)
- Myung-Jin Chung
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - SunYoung Park
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Ji-Yoon Son
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Jae-Yeong Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Hyun Ho Yun
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Eun Mi Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Sunray Lee
- Cell Engineering For Origin , Seoul , Republic of Korea
| | | | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|