1
|
Nishikawa MY. I. Biomaterials for reconstruction of bone and cartilage defects. J Stem Cells Regen Med 2023; 19:34-36. [PMID: 38406618 PMCID: PMC10891311 DOI: 10.46582/jsrm.1902008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
|
2
|
Katoh S, Yoshioka H, Suzuki S, Nakajima H, Iwasaki M, Senthilkumar R, Preethy S, Abraham SJK. An efficient polymer cocktail-based transportation method for cartilage tissue, yielding chondrocytes with enhanced hyaline cartilage expression during in vitro culturing. J Orthop 2022; 29:60-64. [PMID: 35145328 PMCID: PMC8814592 DOI: 10.1016/j.jor.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chondrocytes are used in cell-based therapies such as autologous chondrocyte implantation (ACI) and matrix-associated cartilage implantation (MACI). To transport the cartilage tissue to the laboratory for in vitro culturing, phosphate-buffered saline (PBS), Euro-Collins solution (ECS) and Dulbecco's Modified Eagle's Medium (DMEM) are commonly employed at 4-8 °C. METHODS In this study, eight samples of human cartilage biopsy tissues from elderly patients with severe osteoarthritis undergoing arthroscopy, which would otherwise have been discarded, were used. The cartilage tissue samples were compared to assess the cell yield between two transportation groups: i) a thermo-reversible gelation polymer (TGP) based method without cool preservation (∼25 °C) and ii) ECS transport at 4 °C. These samples were subjected to in vitro culture in a two-dimensional (2D) monolayer for two weeks and subsequently in a three-dimensional (3D) TGP scaffold for six weeks. RESULTS The cell count obtained from the tissues transported in TGP was higher (0.2 million cells) than those transported in ECS (0.08 million cells) both after initial processing and after in vitro culturing for 2 weeks in 2D (18 million cells compared with 10 million cells). In addition, mRNA quantification demonstrated significantly higher expression of Col2a1 and SOX-9 in 3D-TGP cultured cells and lower expression of COL1a1 in RT-PCR, characteristic of the hyaline cartilage phenotype, than in 2D culture. CONCLUSION This study confirms that the TGP cocktail is suitable for both the transport of human cartilage tissue and for in vitro culturing to yield better-quality cells for use in regenerative therapies.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka, 254-0075, Kanagawa, Japan
| | - Shoji Suzuki
- Department of Clinical Education, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroyuki Nakajima
- II Department of Surgery, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Samuel JK. Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan,The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan,Corresponding author. Centre for Advancing Clinical Research (CACR), University of Yamanashi, Faculty of Medicine, 3-8, Wakamatsu, Kofu, 400-0866, Yamanashi, Japan.
| |
Collapse
|
3
|
Hart DA. What Molecular Recognition Systems Do Mesenchymal Stem Cells/Medicinal Signaling Cells (MSC) Use to Facilitate Cell-Cell and Cell Matrix Interactions? A Review of Evidence and Options. Int J Mol Sci 2021; 22:ijms22168637. [PMID: 34445341 PMCID: PMC8395489 DOI: 10.3390/ijms22168637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells, also called medicinal signaling cells (MSC), have been studied regarding their potential to facilitate tissue repair for >30 years. Such cells, derived from multiple tissues and species, are capable of differentiation to a number of lineages (chondrocytes, adipocytes, bone cells). However, MSC are believed to be quite heterogeneous with regard to several characteristics, and the large number of studies performed thus far have met with limited or restricted success. Thus, there is more to understand about these cells, including the molecular recognition systems that are used by these cells to perform their functions, to enhance the realization of their potential to effect tissue repair. This perspective article reviews what is known regarding the recognition systems available to MSC, the possible systems that could be looked for, and alternatives to enhance their localization to specific injury sites and increase their subsequent facilitation of tissue repair. MSC are reported to express recognition molecules of the integrin family. However, there are a number of other recognition molecules that also could be involved such as lectins, inducible lectins, or even a MSC-specific family of molecules unique to these cells. Finally, it may be possible to engineer expression of recognition molecules on the surface of MSC to enhance their function in vivo artificially. Thus, improved understanding of recognition molecules on MSC could further their success in fostering tissue repair.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Health Services Bone & Joint Health Strategic Clinical Network, Edmonton, AB T5H 3E4, Canada
- Centre for Hip Health & Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Katoh S, Fujimaru A, Iwasaki M, Yoshioka H, Senthilkumar R, Preethy S, Abraham SJK. Reversal of senescence-associated beta-galactosidase expression during in vitro three-dimensional tissue-engineering of human chondrocytes in a polymer scaffold. Sci Rep 2021; 11:14059. [PMID: 34234261 PMCID: PMC8263703 DOI: 10.1038/s41598-021-93607-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Regenerative medicine applications require cells that are not inflicted with senescence after in vitro culture for an optimal in vivo outcome. Methods to overcome replicative senescence include genomic modifications which have their own disadvantages. We have evaluated a three-dimensional (3D) thermo-reversible gelation polymer (TGP) matrix environment for its capabilities to reverse cellular senescence. The expression of senescence-associated beta-galactosidase (SA-βgal) by human chondrocytes from osteoarthritis-affected cartilage tissue, grown in a conventional two-dimensional (2D) monolayer culture versus in 3D-TGP were compared. In 2D, the cells de-differentiated into fibroblasts, expressed higher SA-βgal and started degenerating at 25 days. SA-βgal levels decreased when the chondrocytes were transferred from the 2D to the 3D-TGP culture, with cells exhibiting a tissue-like growth until 42-45 days. Other senescence associated markers such as p16INK4a and p21 were also expressed only in 2D cultured cells but not in 3D-TGP tissue engineered cartilage. This is a first-of-its-kind report of a chemically synthesized and reproducible in vitro environment yielding an advantageous reversal of aging of human chondrocytes without any genomic modifications. The method is worth consideration as an optimal method for growing cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
- Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Atsuki Fujimaru
- Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi-Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka, Kanagawa, 254-0075, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India
| | - Samuel J K Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi-Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India.
- JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan.
- Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan.
| |
Collapse
|
5
|
Katoh S, Yoshioka H, Senthilkumar R, Preethy S, Abraham SJK. Enhanced miRNA-140 expression of osteoarthritis-affected human chondrocytes cultured in a polymer based three-dimensional (3D) matrix. Life Sci 2021; 278:119553. [PMID: 33932445 DOI: 10.1016/j.lfs.2021.119553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 01/05/2023]
Abstract
AIMS We have evaluated the potential of a three-dimensional (3D) thermoreversible gelation polymer (TGP) matrix in enhancing miRNA 140 expression (a biomarker correlating with homeostasis and cartilage regeneration) during the in vitro expansion of osteoarthritis (OA)-affected human chondrocytes. MATERIALS AND METHODS OA-chondrocytes were cultured in two-dimensional (2D) monolayer followed by culture in 3D-TGP. miRNA 140 expression levels in cell culture supernatant followed by expression in the cell lysate of both 2D and 3D-TGP cultures were analyzed. KEY FINDINGS The expression of miRNA 140 in cell culture supernatant from the 3D-TGP group was 0.001 to 0.002% that in 2D culture supernatant while in the cell lysate, miRNA 140 expression in the 3D-TGP was nearly 30-fold higher than that of 2D group. SIGNIFICANCE The 3D-TGP matrix allows enhanced expression of miRNA 140 in OA-affected human chondrocytes in vitro which after necessary validations can be applied in clinical transplantation to significantly improve the outcome.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa, Tokyo 133-0052, Japan; Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa, Tokyo 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka 254-0075, Kanagawa, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai 600034, Tamil Nadu, India
| | - Samuel J K Abraham
- The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai 600034, Tamil Nadu, India; JBM Inc., 3-1-14, Higashi Koiwa, Edogawa, Tokyo 133-0052, Japan; University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan; GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi 400-0866, Japan.
| |
Collapse
|
6
|
Namitha B, Chitra MR, Bhavya M, Parikumar P, Katoh S, Yoshioka H, Iwasaki M, Senthilkumar R, Rajmohan M, Karthick R, Preethy S, Abraham SJK. A novel human donor cornea preservation cocktail incorporating a thermo-reversible gelation polymer (TGP), enhancing the corneal endothelial cell density maintenance and explant culture of corneal limbal cells. Biotechnol Lett 2021; 43:1241-1251. [PMID: 33768381 PMCID: PMC8113287 DOI: 10.1007/s10529-021-03116-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Purpose McCarey-Kaufman’s (MK) medium and Optisol-GS medium are the most commonly employed media for human donor corneal preservation. In this study, we evaluated the preservation efficacy of discarded human donor corneas using a Thermo-reversible gelation polymer (TGP) added to these two media. Methods Thirteen human corneal buttons collected from deceased donors, which were otherwise discarded due to low endothelial cell density (ECD) were used. They were stored in four groups: MK medium, MK medium with TGP, Optisol-GS and Optisol-GS with TGP at 4 °C for 96 h. Slit lamp examination and specular microscopy were performed. Corneal limbal tissues from these corneas were then cultured using explant methodology one with and the other without TGP scaffold, for 21 days. Results MK + TGP and Optisol-GS + TGP preserved corneas better than without TGP, which was observed by maintenance of ECD which was significantly higher in Optisol-GS + TGP than MK + TGP (p-value = 0.000478) and corneal thickness remaining the same for 96 h. Viable corneal epithelial cells could be grown from the corneas stored only in MK + TGP and Optisol-GS + TGP. During culture, the TGP scaffold helped maintain the native epithelial phenotype and progenitor/stem cell growth was confirmed by RT-PCR characterization. Conclusion TGP reconstituted with MK and Optisol—GS media yields better preservation of human corneal buttons in terms of relatively higher ECD maintenance and better in vitro culture outcome of corneal limbal tissue. This method has the potential to become a standard donor corneal transportation-preservation methodology and it can also be extended to other tissue or organ transportation upon further validation.
Collapse
Affiliation(s)
| | | | - Mathevan Bhavya
- Regional Institute of Ophthalmology, Egmore, Chennai, Tamilnadu, India
| | - Periasamy Parikumar
- The Light Eye Hospital, Salem Main Rd, Dharmapuri, Tamil Nadu, 636701, India
| | - Shojiro Katoh
- Edogawa Evolutionary Lab of Science (EELS), Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan.,JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka, Kanagawa, 254-0075, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), Faculty of Medicine, Yamanashi University, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India
| | - Mathaiyan Rajmohan
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India
| | - Ramalingam Karthick
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India
| | - Samuel J K Abraham
- Centre for Advancing Clinical Research (CACR), Faculty of Medicine, Yamanashi University, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan. .,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, Tamil Nadu, 600034, India. .,JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan. .,GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan.
| |
Collapse
|
7
|
Katoh S, Yoshioka H, Senthilkumar R, Preethy S, Abraham SJK. Enhanced expression of hyaluronic acid in osteoarthritis-affected knee-cartilage chondrocytes during three-dimensional in vitro culture in a hyaluronic-acid-retaining polymer scaffold. Knee 2021; 29:365-373. [PMID: 33690017 DOI: 10.1016/j.knee.2021.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chondrocyte transplantation to address cartilage damage is an established solution. Because hyaluronic acid (HA) is an essential component for homeostasis of the cartilage, in order to arrive at methodologies to utilize its advantages in cell-based therapies, we compared the HA retention capability of a thermoreversible gelation polymer scaffold-based environment (3D-TGP) with conventional in vitro cell culture methodologies. METHODS Chondrocytes derived from osteoarthritis-affected knee joint cartilage of elderly patients were used and accomplished in three phases. In Phase I, the levels of HA secreted by chondrocytes were measured in culture supernatant. In Phase II, retention capacity of externally added HA was quantified indirectly by measuring the HA released in culture supernatant, and in Phase III, the expression of CD44 on cells was analysed by immunohistochemistry. RESULTS In Phase I, the average HA in the 3D supernatant was 3% that of 2D. In phase II, 80% of externally added HA was detected in the 2D on day 7, while in 3D-TGP, only 0.1% was released until day 21. In Phase III, 2D yielded individual cells that started degenerating from the third week; in 3D-TGP cells grew for a longer duration, formed a tissue-like architecture with extracellular matrix with significantly intense staining of CD44 than 2D. CONCLUSION The capability of the 3D-TGP culture environment to retain HA and support chondrocytes to grow with a tissue-like architecture expressing higher HA content is considered advantageous as it serves as an in vitro culture platform that enables tissue engineering of cartilage tissue with native hyaline phenotype and higher HA expression. The in vitro environment being conducive, based on this data, we also recommend that the TGP be tried as an encapsulation material in clinical studies of chondrocyte implantation for optimal clinical outcome.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, Edogawa-Ku, Tokyo, Japan; Department of Orthopaedic Surgery, Edogawa Hospital, Edogawa-Ku, Tokyo, Japan
| | | | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India
| | - Samuel J K Abraham
- II Department of Surgery & CACR, Yamanashi University-Faculty of Medicine, Yamanashi, Japan; The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India; JBM Inc., Edogawa-Ku, Tokyo, Japan; GN Corporation Co. Ltd., Yamanashi, Japan.
| |
Collapse
|
8
|
Katoh S, Yoshioka H, Iwasaki M, Senthilkumar R, Rajmohan M, Karthick R, Preethy S, Abraham SJ. A three-dimensional in vitro culture environment of a novel polymer scaffold, yielding chondroprogenitors and mesenchymal stem cells in human chondrocytes derived from osteoarthritis-affected cartilage tissue. J Orthop 2021; 23:138-141. [PMID: 33510554 DOI: 10.1016/j.jor.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/10/2021] [Indexed: 01/30/2023] Open
Abstract
Objective We evaluated the expression of stem/progenitor biomarkers in osteoarthritic tissue derived chondrocytes cultured using a three-dimensional (3D) thermo-reversible gelation polymer (TGP). Methods The chondrocytes from discarded biopsy tissues obtained from human elderly patients with osteoarthritis were cultured using the 3D-TGP up to six weeks. Results The chondrocytes grew in a tissue-like manner, without de-differentiation into fibroblasts, and the cells thus tissue-engineered were proven positive for CD49e, OCT4, CD-105 and STRO-1 by immunohistochemistry. Conclusion This study establishes the efficacy of this 3D-TGP platform for clinically useable in-vitro tissue-engineered cartilage for improvising the clinical outcome of cell therapy for cartilage repair.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan.,Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc, 1-25-8, Nakahara, Hiratsuka, 254-0075, Kanagawa, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Mathaiyan Rajmohan
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Ramalingam Karthick
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Samuel Jk Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan.,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India.,JBM Inc, 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan.,GN Corporation Co. Ltd, 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan
| |
Collapse
|
9
|
Organoids enabling COVID-19 research and significance of Biomaterial technologies. J Stem Cells Regen Med 2020; 16:32-33. [PMID: 33414578 PMCID: PMC7772810 DOI: 10.46582/jsrm.1602006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Custom tailoring of Cell therapies to address cartilage damages efficiently. J Stem Cells Regen Med 2020; 16:1-2. [PMID: 32536764 DOI: 10.46582/jsrm.1601001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|