1
|
Wu S, Hu Y, Lei X, Yang X. The Emerging Roles of CircPVT1 in Cancer Progression. Curr Pharm Biotechnol 2025; 26:1-8. [PMID: 38454774 DOI: 10.2174/0113892010282141240226112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
CircRNA is stable due to its ring structure and is abundant in humans, which not only exists in various tissues and biofluids steadily but also plays a significant role in the physiology and pathology of human beings. CircPVT1, an endogenous circRNA, has recently been identified from the PVT1 gene located in the cancer risk region 8q24. CircPVT1 is reported to be highly expressed in many different tumors, where it affects tumor cell proliferation, apoptosis, invasion, and migration. We summarize the biosynthesis and biological functions of circPVT1 and analyze the relationship between circPVT1 and tumors as well as its significance to tumors. Further, it's noteworthy for the diagnosis, treatment, and prognosis of cancer patients. Therefore, circPVT1 is likely to become an innovative tumor marker.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yan Hu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Chen Z, Song J, Qian H, Wang Y, Liang Z. The role of m6A modified circ0049271 induced by MNNG in precancerous lesions of gastric cancer. Heliyon 2024; 10:e35654. [PMID: 39224358 PMCID: PMC11367269 DOI: 10.1016/j.heliyon.2024.e35654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer (GC) is a malignant cancer with the highest global rates of morbidity and death. Dietary factors have a close relationship with the occurrence of GC. Circular RNAs (circRNAs) and N6-methyladenine (m6A) are important factors in the onset and progression of GC and other malignancies. However, little is known about the role of circRNA m6A modifications in the occurrence and development of GC. Initially, a transformed malignant cell model generated by the chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was established in this investigation. Furthermore, following exposure to MNNG, circ0049271 is substantially expressed in gastric epithelial cells (GES-1). Subsequent research revealed that the knockdown of circ0049271 prevented the epithelial-mesenchymal transition (EMT) as well as the migration, invasion, and proliferation of gastric epithelial cells induced by long-term exposure to MNNG. The opposite effects were observed when circ0049271 was overexpressed. Mechanistically, circ0049271 activates the TGFβ/SMAD signaling pathway and has m6A modifications mediated by WTAP. Our findings indicate that circ0049271 promotes the occurrence of GC by regulating the TGFβ/SMAD pathway, and WTAP may mediate the methylation of circ0049271 m6A. This study provides new insights into the regulation of circRNA-mediated m6A modifications and the discovery of early GC induced by dietary factors such as nitrite.
Collapse
Affiliation(s)
- Yue Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, Jiangsu, China
- Laboratory Department, Zhenjiang Center for Diseases Control and Prevention, Zhenjiang, 212000, China
| | - Zhiqiang Chen
- Ent Hospital of Nanjing Renpin, Nanjing, 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yue Wang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
3
|
Chen NN, Zhou KF, Miao Z, Chen YX, Cui JX, Su SW. Exosomes regulate doxorubicin resistance in breast cancer via miR-34a-5p/NOTCH1. Mol Cell Probes 2024; 76:101964. [PMID: 38810840 DOI: 10.1016/j.mcp.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
- Nan-Nan Chen
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ke-Fan Zhou
- Key Laboratory of Innovative Drug Research and Safety Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhuang Miao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yun-Xia Chen
- Key Laboratory of Innovative Drug Research and Safety Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jing-Xia Cui
- Key Laboratory of Innovative Drug Research and Safety Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Su-Wen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
4
|
An TY, Hu QM, Ni P, Hua YQ, Wang D, Duan GC, Chen SY, Jia B. N6-methyladenosine modification of hypoxia-inducible factor-1α regulates Helicobacter pylori-associated gastric cancer via the PI3K/AKT pathway. World J Gastrointest Oncol 2024; 16:3270-3283. [PMID: 39072157 PMCID: PMC11271789 DOI: 10.4251/wjgo.v16.i7.3270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) colonizes the human gastric mucosa and is implicated in the development of gastric cancer (GC). The tumor microenvironment is characterized by hypoxia, where hypoxia-inducible factor-1α (HIF-1α) plays a key role as a transcription factor, but the mechanisms underlying H. pylori-induced HIF-1α expression and carcinogenesis remain unclear. AIM To explore the underlying mechanism of H. pylori-induced HIF-1α expression in promoting the malignant biological behavior of gastric epithelial cells (GES-1). METHODS The study was conducted with human GES-1 cells in vitro. Relative protein levels of methyltransferase-like protein 14 (METTL14), HIF-1α, main proteins of the PI3K/AKT pathway, epithelial-mesenchymal transition (EMT) biomarkers, and invasion indicators were detected by Western blot. Relative mRNA levels of METTL14 and HIF-1α were detected by quantitative reverse transcription-polymerase chain reaction. mRNA stability was evaluated using actinomycin D, and the interaction between METTL14 and HIF-1α was confirmed by immunofluorescence staining. Cell proliferation and migration were evaluated by cell counting kit-8 assay and wound healing assay, respectively. RESULTS H. pylori promoted HIF-1α expression and activated the PI3K/AKT pathway. Notably, METTL14 was downregulated in H. pylori-infected gastric mucosal epithelial cells and positively regulated HIF-1α expression. Functional experiments showed that the overexpression of HIF-1α or knockdown of METTL14 enhanced the activity of the PI3K/AKT pathway, thereby driving a series of malignant transformation, such as EMT and cell proliferation, migration, and invasion. By contrast, the knockdown of HIF-1α or overexpression of METTL14 had an opposite effect. CONCLUSION H. pylori-induced underexpression of METTL14 promotes the translation of HIF-1α and accelerates tumor progression by activating the PI3K/AKT pathway. These results provide novel insights into the carcinogenesis of GC.
Collapse
Affiliation(s)
- Tong-Yan An
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Quan-Man Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yan-Qiao Hua
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Di Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Guang-Cai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shuai-Yin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
5
|
He M, Zhang J, Li N, Chen L, He Y, Peng Z, Wang G. Synthesis, anti-browning effect and mechanism research of kojic acid-coumarin derivatives as anti-tyrosinase inhibitors. Food Chem X 2024; 21:101128. [PMID: 38292671 PMCID: PMC10826612 DOI: 10.1016/j.fochx.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Thirteen kojic acid-coumarin derivatives were synthesized using the principle of molecular hybridization, and their structures were characterized by 1H NMR, 13C NMR, and HRMS. In vitro enzyme inhibition experiments showed that all newly synthesized derivatives have excellent inhibition of tyrosinase (TYR) activity. As a mixed inhibitor, compound 6f has the strongest activity, with an IC50 value of 0.88 ± 0.10 µM. Multispectral experiments have confirmed that the mode of action of compound 6f on TYR was static quenching. In addition, compound 6f formed a new complex with TYR, which increased the hydrophobicity of the enzyme microenvironment, reduced the content of the α-helix in the enzyme, and changed the secondary structure. The experimental results showed that compound 6f effectively inhibited the browning of lotus root slices and had low cytotoxicity. Therefore, compound 6f is believed to have great development potential as a TYR inhibitor in the food industry.
Collapse
Affiliation(s)
- Min He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jinfeng Zhang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Na Li
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Chen
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Wu W, Wang Z, Zhang H, Zhang X, Tian H. circGRHPR inhibits aberrant epithelial-mesenchymal transformation progression of lung epithelial cells associated with idiopathic pulmonary fibrosis. Cell Biol Toxicol 2024; 40:7. [PMID: 38267743 PMCID: PMC10808371 DOI: 10.1007/s10565-024-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Air pollution has greatly increased the risk of idiopathic pulmonary fibrosis (IPF). Circular RNAs (circRNAs) have been found to play a significant role in the advancement of IPF, but there is limited evidence of correlation between circRNAs and lung epithelial cells (LECs) in IPF. This research aimed to explore the influence of circRNAs on the regulation of EMT progression in LECs, with the objective of elucidating its mechanism and establishing its association with IPF. Our results suggested that the downregulation of circGRHPR in peripheral blood of clinical cases was associated with the diagnosis of IPF. Meanwhile, we found that circGRHPR was downregulated in transforming growth factor-beta1 (TGF-β1)-induced A549 and Beas-2b cells. It is a valid model to study the abnormal EMT progression of IPF-associated LECs in vitro. The overexpression of circGRHPR inhibited the abnormal EMT progression of TGF-β1-induced LECs. Furthermore, as the sponge of miR-665, circGRHPR released the expression of E3 ubiquitin-protein ligase NEDD4-like (NEDD4L), thus promoting its downstream transforming growth factor beta receptor 2 (TGFBR2) ubiquitination. It is helpful to reduce the response of LECs to TGF-β1 signaling. In summary, circGRHPR/miR-665/NEDD4L axis inhibited the abnormal EMT progression of TGF-β1-induced LECs by promoting TGFBR2 ubiquitination, which provides new ideas and potential targets for the treatment of IPF.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Lixia District, Jinan, 250012, People's Republic of China.
| |
Collapse
|
7
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
8
|
Luce A, Lombardi A, Ferri C, Zappavigna S, Tathode MS, Miles AK, Boocock DJ, Vadakekolathu J, Bocchetti M, Alfano R, Sperlongano R, Ragone A, Sapio L, Desiderio V, Naviglio S, Regad T, Caraglia M. A Proteomic Approach Reveals That miR-423-5p Modulates Glucidic and Amino Acid Metabolism in Prostate Cancer Cells. Int J Mol Sci 2022; 24:ijms24010617. [PMID: 36614061 PMCID: PMC9820599 DOI: 10.3390/ijms24010617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.
Collapse
Affiliation(s)
- Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Carmela Ferri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Medicina Futura Group, Coleman S.p.A, Via Alcide De Gasperi 107/109/111, Acerra, 80011 Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - David J. Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | | | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS”, University of Campania “Luigi Vanvitelli”, Via S. M. di Costantinopoli 104, 80138 Naples, Italy
| | - Rossella Sperlongano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angela Ragone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Luigi Sapio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-081-5667517
| | - Tarik Regad
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| |
Collapse
|
9
|
Li F, Li S, Wang X, Liu C, Li X, Li Y, Liu Y. To investigate the prognostic factors of stage Ⅰ-Ⅱ gastric cancer based on P53 mutation and tumor budding. Pathol Res Pract 2022; 240:154195. [PMID: 36356333 DOI: 10.1016/j.prp.2022.154195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND P53 is a tumor suppressor and genome guardian factor, and tumor budding is a key link in tumor metastasis. The purpose of this study was to investigate P53 mutation and tumor budding in stage Ⅰ-Ⅱ gastric cancer, to explore the correlation with clinicopathological features, and to reveal the independent prognostic factors of gastric cancer. METHODS The data of 588 patients with stage Ⅰ-Ⅱ gastric cancer who underwent radical surgical resection from April 2015 to December 2016 in the Fourth Hospital of Hebei Medical University were retrospectively analyzed and followed up. Immunohistochemistry Envision method was used to conduct P53 staining for paraffin-embedded gastric cancer tissues, and ITBCC recommended tumor budding evaluation method was used to count tumor budding in gastric cancer tissues. The factors affecting the prognosis of gastric cancer were analyzed. RESULTS There were 209 cases (35.54%) of P53 wild-type and 379 cases (64.46 %) of P53 mutant in 588 patients with stage Ⅰ-Ⅱ gastric cancer. P53 mutation rate were closely correlated with Lauren classification (χ2 =8.152, p = 0.017), degree of differentiation (χ2 =10.495, p = 0.004), number of lymph node metastasis (χ2 =25.550, p < 0.001), and clinical stage (χ2 =7.617, p = 0.016). Tumor budding were closely correlated with Lauren classification (χ2 =194.533, p < 0.001), degree of tissue differentiation (χ2 =22.719, p < 0.001), depth of tumor invasion (χ2 =19.204, p = 0.004), number of lymph node metastasis (χ2 =22.555, p = 0.001), clinical stage (χ2 =10.769, p = 0.005), and vascular tumors bolt (χ2 =12.478, p = 0.002). The higher the tumor budding grade was, the higher the P53 mutation rate was (χ2 =12.933, p = 0.002). Lauren classification (p < 0.001), degree of tissue differentiation (p = 0.005), vascular tumors bolt (p < 0.001) and P53 mutation (p = 0.006) were independent influencing factors for 5-year survival of patients with stage Ⅰ-Ⅱ gastric cancer. CONCLUSION P53 mutation status is an independent prognostic factor for gastric cancer patients and a promising cancer treatment target. Tumor budding is a very reliable independent prognostic parameter with important clinical value and should be routinely reported as a biomarker.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shi Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinran Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Department of Scientific Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|