1
|
Gorodetskiy V, Sudarikov A. Aleukemic variant of T-cell large granular lymphocyte leukemia in patients with rheumatoid arthritis - diagnostically challenging subtype. Expert Rev Clin Immunol 2024; 20:1323-1330. [PMID: 39049194 DOI: 10.1080/1744666x.2024.2384057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The typical clinical manifestations of T-cell large granular lymphocyte (T-LGL) leukemia are an increase in the number of large granular lymphocytes (LGLs) in the blood > 2000 cells/μL, neutropenia, and splenomegaly. In rare cases of so-called 'aleukemic' T-LGL leukemia, the number of LGLs is <400-500 cells/μL. In patients with rheumatoid arthritis (RA), distinguishing T-LGL leukemia with low tumor burden in the blood and bone marrow from Felty syndrome (FS) poses diagnostic challenges. AREAS COVERED This review aimed to describe the basic characteristics and variants of aleukemic T-LGL leukemia, with a special focus on aleukemic T-LGL leukemia with massive splenomegaly (splenic variant of T-LGL leukemia) and differential diagnosis of such cases with hepatosplenic T-cell lymphoma. The significance of mutations in the signal transducer and activator of transcription 3 (STAT3) gene for distinguishing aleukemic RA-associated T-LGL leukemia from FS is discussed, along with the evolution of the T-LGL leukemia diagnostic criteria. PubMed database was used to search for the most relevant literature. EXPERT OPINION Evaluation of STAT3 mutations in the blood and bone marrow using next-generation sequencing, as well as a comprehensive spleen study, may be necessary to establish a diagnosis of aleukemic RA-associated T-LGL leukemia.
Collapse
|
2
|
de Leval L, Gaulard P, Dogan A. A practical approach to the modern diagnosis and classification of T- and NK-cell lymphomas. Blood 2024; 144:1855-1872. [PMID: 38728419 DOI: 10.1182/blood.2023021786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT T- and natural killer (NK)-cell lymphomas are neoplasms derived from immature T cells (lymphoblastic lymphomas), or more commonly, from mature T and NK cells (peripheral T-cell lymphomas, PTCLs). PTCLs are rare but show marked biological and clinical diversity. They are usually aggressive and may present in lymph nodes, blood, bone marrow, or other organs. More than 30 T/NK-cell-derived neoplastic entities are recognized in the International Consensus Classification and the classification of the World Health Organization (fifth edition), both published in 2022, which integrate the most recent knowledge in hematology, immunology, pathology, and genetics. In both proposals, disease definition aims to integrate clinical features, etiology, implied cell of origin, morphology, phenotype, and genetic features into biologically and clinically relevant clinicopathologic entities. Cell derivation from innate immune cells or specific functional subsets of CD4+ T cells such as follicular helper T cells is a major determinant delineating entities. Accurate diagnosis of T/NK-cell lymphoma is essential for clinical management and mostly relies on tissue biopsies. Because the histological presentation may be heterogeneous and overlaps with that of many benign lymphoid proliferations and B-cell lymphomas, the diagnosis is often challenging. Disease location, morphology, and immunophenotyping remain the main features guiding the diagnosis, often complemented by genetic analysis including clonality and high-throughput sequencing mutational studies. This review provides a comprehensive overview of the classification and diagnosis of T-cell lymphoma in the context of current concepts and scientific knowledge.
Collapse
MESH Headings
- Humans
- Lymphoma, Extranodal NK-T-Cell/diagnosis
- Lymphoma, Extranodal NK-T-Cell/classification
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Killer Cells, Natural/pathology
- Killer Cells, Natural/immunology
- Lymphoma, T-Cell/classification
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/genetics
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
3
|
Marchand T, Lamy T, Loughran TP. A modern view of LGL leukemia. Blood 2024; 144:1910-1923. [PMID: 38848524 DOI: 10.1182/blood.2023021790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
ABSTRACT Large granular lymphocytic leukemia (LGLL) is a rare lymphoproliferative chronic disorder characterized by expansion of either T or natural killer (NK) cytotoxic cells. In contrast to Epstein-Barr virus-induced aggressive NK-LGLL, chronic T-LGLL and NK-LGLL are indolent diseases affecting older patients with a median age of 66.5 years. LGLL is frequently associated with autoimmune disorders, most frequently rheumatoid arthritis. An auto-/alloantigen is tentatively implicated in disease initiation. Large granular lymphocyte expansion is then triggered by proinflammatory cytokines such as interleukin-15, macrophage inflammatory protein 1 (MIP-1), and RANTES (regulated upon activation, normal T cell expressed, and secreted). This proinflammatory environment contributes to deregulation of proliferative and apoptotic pathways. After the initial description of the JAK-STAT pathway signaling activation in the majority of patients, recurrent STAT3 gain-of-function mutations have been reported. The JAK-STAT pathway plays a key role in LGL pathogenesis by promoting survival, proliferation, and cytotoxicity. Several recent advances have been made toward understanding the molecular landscapes of T- and NK-LGLL, identifying multiple recurrent mutations affecting the epigenome, such as TET2 or KMT2D, and cross talk with the immune microenvironment, such as CCL22. Despite an indolent course, published series suggest that the majority of patients eventually need treatment. However, it is noteworthy that many patients may have a long-term observation period without ever requiring therapy. Treatments rely upon immunosuppressive drugs, namely cyclophosphamide, methotrexate, and cyclosporine. Recent advances have led to the development of targeted approaches, including JAK-STAT inhibitors, cytokine targeting, and hypomethylating agents, opening new developments in a still-incurable disease.
Collapse
Affiliation(s)
- Tony Marchand
- Department of Hematology, Rennes University Hospital, Rennes, France
- Faculty of Medicine, Rennes University, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Thierry Lamy
- Department of Hematology, Rennes University Hospital, Rennes, France
- Faculty of Medicine, Rennes University, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
4
|
Gueuning C, Lazaro E, Dupuy H, Leonard C, Greib C, Prot-Leurent C, Riviere E, Viallard JF. Characteristics of large granular lymphocyte leukemia associated with variable common immunodeficiency disorders: A study of 12 cases. Eur J Haematol 2024; 113:550-557. [PMID: 38988123 DOI: 10.1111/ejh.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES Common Variable Immunodeficiency Disorders (CVID) and Large Granular Lymphocytes leukemia (LGLL) exhibit diverse clinical manifestations including infections, dysimmunity, and lymphoproliferation. Recent decades have seen the discovery of new genes in the lymphopoiesis pathway, such as JAK-STAT. This case series supplemented by a literature review aims to describe clinical and biological characteristics of patients with both CIVD and LGLL. METHODOLOGY Patients were included through a call for comments to French and Belgian centers and through a literature review via PubMed. Clinical characteristics were compared to two large French cohort involving CVID and LGLL patients. RESULTS Twelve patients were included. In all cases, CVID precedes LLGL (median diagnosis delay for LLGL was 7 years). Most cases presented with splenomegaly and autoimmune cytopenia. Ten out of 12 patients underwent splenectomy during follow up. CONCLUSIONS Patients with LGLL and CVID differ from patients without immune deficiency in term of clinical presentation and prognosis. We suggest CVID may act as a trigger of LGL lymphocytosis, due to endogenous and exogenous antigenic pressure leading to the selection of a dominant LGL clone and stimulation of the JAK-STAT pathway. The role of splenomegaly and splenectomy in LGLL onset warrant further investigation in future studies.
Collapse
Affiliation(s)
- C Gueuning
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
| | - E Lazaro
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
- Université de Bordeaux, Bordeaux, France
| | - H Dupuy
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
| | - C Leonard
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
| | - C Greib
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
| | - C Prot-Leurent
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
| | - E Riviere
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
- Université de Bordeaux, Bordeaux, France
| | - J F Viallard
- Internal Medicine and Infectious diseases, Hôpital Haut-Lévêque, Pessac, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Marchand T, Pastoret C, Damaj G, Lebouvier A, Herbaux C, Moignet A, Pavlosky M, Pavlosky A, Blouet A, Eloit M, Launay V, Lebreton P, Stamatoullas A, Nilsson C, Ochmann M, Prola J, Lamy T. Efficacy of ruxolitinib in the treatment of relapsed/refractory large granular lymphocytic leukaemia. Br J Haematol 2024; 205:915-923. [PMID: 38639192 DOI: 10.1111/bjh.19476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Large granular lymphocytic (LGL) leukaemia is a rare chronic lymphoproliferative disorder characterized by an expansion of cytotoxic T or NK cells. Despite a usually indolent evolution, most patients will require a treatment over the course of the disease because of cytopenia or symptomatic associated autoimmune disorders. First-line treatment is based on immunosuppressive agents, namely cyclophosphamide, methotrexate and ciclosporin. However, relapses are frequent, and there is no consensus on the management of relapsed/refractory patients. The implication of the JAK/STAT pathway in the pathogenesis of this disease has prompted our group to propose treatment with ruxolitinib. A series of 21 patients who received this regimen is reported here. Ten patients (47.6%) were refractory to the three main immunosuppressive drugs at the time of ruxolitinib initiation. Ruxolitinib yielded an overall response rate of 86% (n = 18/21), including 3 complete responses and 15 partial responses. With a median follow-up of 9 months, the median response duration was 4 months. One-year event-free survival and 1-year overall survival were 57% and 83% respectively. Mild side effects were observed. Biological parameters, notably neutropenia and anaemia, improved significantly, and complete molecular responses were evidenced. This study supports ruxolitinib as a valid option for the treatment of relapsed/refractory LGL leukaemia.
Collapse
Affiliation(s)
- Tony Marchand
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- Université de Rennes, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Cédric Pastoret
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Gandhi Damaj
- Institut d'Hématologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Angélique Lebouvier
- Institut d'Hématologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Charles Herbaux
- Service d'Hématologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
- Institut de Génétique Humaine, UMR 9002 CNRS-UM, Montpellier, France
| | - Aline Moignet
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Miguel Pavlosky
- Fundaleu-Fundación Para Combatir la Leucemia, Buenos Aires, Argentina
| | - Astrid Pavlosky
- Fundaleu-Fundación Para Combatir la Leucemia, Buenos Aires, Argentina
| | - Anaise Blouet
- Hématologie, Strasbourg Oncologie Libérale, Clinique Saint Anne, Strasbourg, France
| | - Martin Eloit
- Service d'Hématologie et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Tours, France
| | - Vincent Launay
- Service d'Hématologie, Centre Hospitalier de Saint Brieuc, Saint Brieuc, France
| | | | | | | | - Marlène Ochmann
- Service d'Hématologie, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Juliette Prola
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Thierry Lamy
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- Université de Rennes, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
- CIC 1414, Rennes, France
| |
Collapse
|
6
|
Gorodetskiy V, Sidorova Y, Biderman B, Kupryshina N, Ryzhikova N, Sudarikov A. Gamma-delta T-cell large granular lymphocytic leukemia in the setting of rheumatologic diseases. Front Cell Dev Biol 2024; 12:1434676. [PMID: 39161592 PMCID: PMC11331004 DOI: 10.3389/fcell.2024.1434676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Background T-cell leukemia originating from large granular lymphocytes (T-LGL leukemia) is a rare lymphoid neoplasia characterized by clonal proliferation of large granular T lymphocytes expressing αβ or γδ T-cell receptor (TCR) on the cell membrane. γδT-LGL leukemia, accounting for approximately 17% of all T-LGL leukemia cases, is associated with autoimmune diseases. However, the features of γδT-LGL leukemia in patients with rheumatologic diseases are still insufficiently characterized. Methods In this retrospective study, 15 patients with rheumatologic disease-associated γδT-LGL leukemia were included. The patients were obtained from a single center from 2008 to 2023. Data related to clinical characteristics and rheumatologic diagnoses were collected. Immunophenotype evaluations as well as T-lymphocyte clonality (based on TCR-γ, TCR-β, and TCR-δ gene rearrangements), and signal transducer and activator of transcription (STAT) three and STAT5B mutation analyses (by next-generation sequencing) were performed on blood, bone marrow, and spleen samples. Results All but one patient had rheumatoid arthritis (RA). In 36% of patients, manifestations of γδT-LGL leukemia were present before or concurrently with clinical manifestations of RA. Splenomegaly was observed in 60% of patients and neutropenia (<1.5 × 109/L) was detected in 93% of cases. CD4-/CD8- and CD4-/CD8+ subtypes were detected in seven cases each. Mutations in STAT3 were detected in 80% of patients; however, STAT5B mutations were not detected. Evaluations of T-cell clonality and variant allele frequencies at STAT3 in the blood, bone marrow, and spleen tissue revealed an unusual variant of CD4-/CD8- γδT-LGL leukemia with predominant involvement of the spleen, involvement of the bone marrow to a less extent, and no tumor cells in peripheral blood. Conclusion The mechanism by which γδT-LGL leukemia may induce the development of RA in some patients requires further investigation. Cases of RA-associated γδT-LGL leukemia with neutropenia and splenomegaly but no detectable tumor-associated lymphocytes in peripheral blood (the so-called splenic variant of T-LGL leukemia) are difficult to diagnose and may be misdiagnosed as Felty syndrome or hepatosplenic T-cell lymphoma.
Collapse
Affiliation(s)
| | - Yulia Sidorova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Bella Biderman
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Natalia Kupryshina
- Hematopoiesis Immunology Laboratory, Russian Cancer Research Center N.N. Blokhin, Moscow, Russia
| | - Natalya Ryzhikova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Andrey Sudarikov
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
7
|
Libonati R, Soda M, Statuto T, Valvano L, D’Auria F, D’Arena G, Pietrantuono G, Villani O, Mansueto GR, D’Agostino S, Di Somma MD, Telesca A, Vilella R. T-Large Granular Lymphocytic Leukemia with Hepatosplenic T-Cell Lymphoma? A Rare Case of Simultaneous Neoplastic T-Cell Clones Highlighted by Flow Cytometry and Review of Literature. Biomedicines 2024; 12:993. [PMID: 38790955 PMCID: PMC11117647 DOI: 10.3390/biomedicines12050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Lymphoproliferative diseases are a heterogeneous set of malignant clonal proliferations of lymphocytes. Despite well-established diagnostic criteria, the diagnosis remains difficult due to their variety in clinical presentation and immunophenotypic profile. Lymphoid T-cell disorders are less common than B-cell entities, and the lack of a clear immunophenotypic characteristic makes their identification hard. Flow cytometry turned out to be a useful tool in diagnosing T-cell disorders and to resolve complicated cases, especially if the number of analyzable neoplastic cells is small. We present a case of a 55-year-old man with simultaneous lymphoproliferative neoplastic T-cell clones, one αβ and the other γδ, identified and characterized by flow cytometry (FC), exploiting the variable expression intensity of specific markers. However, the patient's rapid decline made it impossible to define a differential diagnosis in order to confirm the identity of the γδ clone, which remains uncertain. This case is added to the few other cases already documented in the literature, characterized by the co-existence of T-large granular lymphocytic leukemia (T-LGLL)-αβ and T-LGLL-γδ/Hepatosplenic T-cell lymphoma (HSTCL). Our case underlines the key role of sensitive diagnostic tools in the assessment of potential relationship between the diagnosis, prognosis, and treatment in the two pathologies.
Collapse
Affiliation(s)
- Rossana Libonati
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy; (R.L.); (M.S.); (A.T.); (R.V.)
| | - Michela Soda
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy; (R.L.); (M.S.); (A.T.); (R.V.)
| | - Teodora Statuto
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy; (R.L.); (M.S.); (A.T.); (R.V.)
| | - Luciana Valvano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy; (R.L.); (M.S.); (A.T.); (R.V.)
| | - Fiorella D’Auria
- Laboratory of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy;
| | - Giovanni D’Arena
- Immunohematology and Transfusional Medicine, “S. Luca” Hospital, ASL Salerno, 84078 Vallo della Lucania, Italy;
| | - Giuseppe Pietrantuono
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (G.P.); (O.V.); (G.R.M.); (S.D.)
| | - Oreste Villani
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (G.P.); (O.V.); (G.R.M.); (S.D.)
| | - Giovanna Rosaria Mansueto
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (G.P.); (O.V.); (G.R.M.); (S.D.)
| | - Simona D’Agostino
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (G.P.); (O.V.); (G.R.M.); (S.D.)
| | - Massimo Dante Di Somma
- Anatomical Pathology Department, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| | - Alessia Telesca
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy; (R.L.); (M.S.); (A.T.); (R.V.)
| | - Rocchina Vilella
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero In Vulture, Italy; (R.L.); (M.S.); (A.T.); (R.V.)
| |
Collapse
|
8
|
Marchand T, Lamy T. The complex relationship between large granular lymphocyte leukemia and rheumatic disease. Expert Rev Clin Immunol 2024; 20:291-303. [PMID: 38105745 DOI: 10.1080/1744666x.2023.2292758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Large granular lymphocytic (LGL) leukemia is a rare lymphoproliferative disorder characterized by an expansion of clonal T or NK lymphocytes. Neutropenia-related infections represent the main clinical manifestation. Even if the disease follows an indolent course, most patients will ultimately need treatment in their lifetime. Interestingly, LGL leukemia is characterized by a high frequency of autoimmune disorders with rheumatoid arthritis being the most frequent. AREAS COVERED This review covers the pathophysiology, clinic-biological features and the advances made in the treatment of LGL leukemia. A special focus will be made on the similarities in the pathophysiology of LGL leukemia and the frequently associated rheumatic disorders. EXPERT OPINION Recent advances in the phenotypic and molecular characterization of LGL clones have uncovered the key role of JAK-STAT signaling in the pathophysiology linking leukemic cells expansion and autoimmunity. The description of the molecular landscape of T- and NK-LGL leukemia and the improved understanding of the associated rheumatic disorders open the way to the development of new targeted therapies effective on both conditions.
Collapse
Affiliation(s)
- Tony Marchand
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- Université Rennes 1, Rennes, France
- UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Thierry Lamy
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France
- Université Rennes 1, Rennes, France
- UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
- CIC 1414, Rennes, France
| |
Collapse
|