1
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
Almeida-Paes R, Frases S. Repurposing drugs for fungal infections: advantages and limitations. Future Microbiol 2023; 18:1013-1016. [PMID: 37721174 DOI: 10.2217/fmb-2023-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Tweetable abstract Repurposing existing drugs for fungal infections has demonstrated potential in both in vitro and animal models, but there are still obstacles to overcome for clinical application. #antifungal #drugrepurposing #fungalinfections.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, 21040-360, Brazil
| | - Susana Frases
- Rede Micologia - FAPERJ, Rio de Janeiro, 21040-360, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
3
|
Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A. The Antidepressant Sertraline Affects Cell Signaling and Metabolism in Trichophyton rubrum. J Fungi (Basel) 2023; 9:275. [PMID: 36836389 PMCID: PMC9961077 DOI: 10.3390/jof9020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.
Collapse
Affiliation(s)
- Flaviane M. Galvão-Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Carlos H. L. Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Maíra P. Martins
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Tamires A. Bitencourt
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
4
|
Almeida-Silva F, Bernardes-Engemann AR, Bérenger ALR, da Silva VP, Figueiredo MR, Freitas DFS. In vitro activity of Schinus terebinthifolius extract and fractions against Sporothrix brasiliensis. Mem Inst Oswaldo Cruz 2022; 117:e220063. [PMID: 36197404 PMCID: PMC9524759 DOI: 10.1590/0074-02760220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sporothrix brasiliensis is the causative agent of zoonotic cases of sporotrichosis in Brazil and is associated with atypical and severe presentations in cats, dogs, and humans. Sporotrichosis treatment is usually time- and cost-consuming, sometimes with poor response and host toxicity. Schinus terebinthifolius has proven efficacy against bacteria and fungi of clinical interest. OBJECTIVE To determine the in vitro activity of S. terebinthifolius against S. brasiliensis. METHODS Five S. brasiliensis isolates and three reference strains were subjected to a hydroethanol extract derived from the leaves of S. terebinthifolius and its fractions. The minimal inhibitory concentration (MIC) was determined using the broth microdilution method according to the M38-A2 CLSI guidelines. Also, the fungicidal/fungistatic activity of the extract and fractions was studied. FINDINGS The crude extract of S. terebinthifolius inhibited the growth of S. brasiliensis (MIC: 0.5-1.0 µg/mL), while the partitioned extracts dichloromethane, ethyl acetate, and butanol demonstrated growth inhibition at 8 µg/mL due to a fungistatic activity. MAIN CONCLUSIONS Due to its in vitro efficacy against S. brasiliensis and its known pharmacological safety, S. terebinthifolius is a candidate to be tested using in vivo models of sporotrichosis.
Collapse
|
5
|
Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J Fungi (Basel) 2020; 6:jof6010028. [PMID: 32106450 PMCID: PMC7151215 DOI: 10.3390/jof6010028] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
Invasive fungal infections are associated with significant morbidity and mortality, and their management is restricted to a variety of agents from five established classes of antifungal medication. In practice, existing antifungal agents are often constrained by dose-limiting toxicities, drug interactions, and the routes of administration. An increasing prevalence of invasive fungal infections along with rising rates of resistance and the practical limitations of existing agents has created a demand for the development of new antifungals, particularly those with novel mechanisms of action. This article reviews antifungal agents currently in various stages of clinical development. New additions to existing antifungal classes will be discussed, including SUBA-itraconazole, a highly bioavailable azole, and amphotericin B cochleate, an oral amphotericin formulation, as well as rezafungin, a long-acting echinocandin capable of once-weekly administration. Additionally, novel first-in-class agents such as ibrexafungerp, an oral glucan synthase inhibitor with activity against various resistant fungal isolates, and olorofim, a pyrimidine synthesis inhibitor with a broad spectrum of activity and oral formulation, will be reviewed. Various other innovative antifungal agents and classes, including MGCD290, tetrazoles, and fosmanogepix, will also be examined.
Collapse
|
6
|
In Vitro Activity of Sertraline, an Antidepressant, Against Antibiotic-Susceptible and Antibiotic-Resistant Helicobacter pylori Strains. Pathogens 2019; 8:pathogens8040228. [PMID: 31717683 PMCID: PMC6963513 DOI: 10.3390/pathogens8040228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substance. The aim of the study, therefore, was to determine the antibacterial activity of SER in relation to antibiotic-sensitive and antibiotic-resistant H. pylori strains. The antimicrobial tests were performed using a diffusion-disk method, microdilution method, and time-killing assay. The interaction between SER and antibiotics (amoxicillin, clarithromycin, tetracycline, and metronidazole) was determined by using a checkerboard method. In addition, the study was expanded to include observations by light, fluorescence, and scanning electron microscopy. The growth inhibition zones were in the range of 19–37 mm for discs impregnated with 2 mg of SER. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) counted for 2–8 µg/mL and 4–8 µg/mL, respectively. The time-killing assay showed the time-dependent and concentration-dependent bactericidal activity of SER. Bacteria exposed to MBCs (but not sub-MICs and MICs ≠ MBCs) underwent morphological transformation into coccoid forms. This mechanism, however, was not protective because these cells after a 24-h incubation had a several-fold reduced green/red fluorescence ratio compared to the control. Using the checkerboard assay, a synergistic/additive interaction of SER with all four antibiotics tested was demonstrated. These results indicate that SER may be a promising anti-H. pylori compound.
Collapse
|