1
|
D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med 2024; 14:641. [PMID: 38929862 PMCID: PMC11205016 DOI: 10.3390/jpm14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism has been increasing at an alarming rate. Even accounting for the expansion of autism spectrum disorder diagnostic (ASD) criteria throughout the 1990's, there has been an over 300% increase in ASD prevalence since the year 2000. The often debilitating personal, familial, and societal sequelae of autism are generally believed to be lifelong. However, there have been several encouraging case reports demonstrating the reversal of autism diagnoses, with a therapeutic focus on addressing the environmental and modifiable lifestyle factors believed to be largely underlying the condition. This case report describes the reversal of autism symptoms among dizygotic, female twin toddlers and provides a review of related literature describing associations between modifiable lifestyle factors, environmental exposures, and various clinical approaches to treating autism. The twins were diagnosed with Level 3 severity ASD "requiring very substantial support" at approximately 20 months of age following concerns of limited verbal and non-verbal communication, repetitive behaviors, rigidity around transitions, and extensive gastrointestinal symptoms, among other common symptoms. A parent-driven, multidisciplinary, therapeutic intervention involving a variety of licensed clinicians focusing primarily on addressing environmental and modifiable lifestyle factors was personalized to each of the twin's symptoms, labs, and other outcome measures. Dramatic improvements were noted within several months in most domains of the twins' symptoms, which manifested in reductions of Autism Treatment Evaluation Checklist (ATEC) scores from 76 to 32 in one of the twins and from 43 to 4 in the other twin. The improvement in symptoms and ATEC scores has remained relatively stable for six months at last assessment. While prospective studies are required, this case offers further encouraging evidence of ASD reversal through a personalized, multidisciplinary approach focusing predominantly on addressing modifiable environmental and lifestyle risk factors.
Collapse
Affiliation(s)
- Christopher R. D’Adamo
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Josephine L. Nelson
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Sara N. Miller
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Maria Rickert Hong
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Elizabeth Lambert
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | | |
Collapse
|
2
|
Neuroinflammation, Energy and Sphingolipid Metabolism Biomarkers Are Revealed by Metabolic Modeling of Autistic Brains. Biomedicines 2023; 11:biomedicines11020583. [PMID: 36831124 PMCID: PMC9953696 DOI: 10.3390/biomedicines11020583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders generally characterized by repetitive behaviors and difficulties in communication and social behavior. Despite its heterogeneous nature, several metabolic dysregulations are prevalent in individuals with ASD. This work aims to understand ASD brain metabolism by constructing an ASD-specific prefrontal cortex genome-scale metabolic model (GEM) using transcriptomics data to decipher novel neuroinflammatory biomarkers. The healthy and ASD-specific models are compared via uniform sampling to identify ASD-exclusive metabolic features. Noticeably, the results of our simulations and those found in the literature are comparable, supporting the accuracy of our reconstructed ASD model. We identified that several oxidative stress, mitochondrial dysfunction, and inflammatory markers are elevated in ASD. While oxidative phosphorylation fluxes were similar for healthy and ASD-specific models, and the fluxes through the pathway were nearly undisturbed, the tricarboxylic acid (TCA) fluxes indicated disruptions in the pathway. Similarly, the secretions of mitochondrial dysfunction markers such as pyruvate are found to be higher, as well as the activities of oxidative stress marker enzymes like alanine and aspartate aminotransferases (ALT and AST) and glutathione-disulfide reductase (GSR). We also detected abnormalities in the sphingolipid metabolism, which has been implicated in many inflammatory and immune processes, but its relationship with ASD has not been thoroughly explored in the existing literature. We suggest that important sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), ceramide, and glucosylceramide, may be promising biomarkers for the diagnosis of ASD and provide an opportunity for the adoption of early intervention for young children.
Collapse
|
3
|
Anne A, Saxena S, Mohan KN. Genome-wide methylation analysis of post-mortem cerebellum samples supports the role of peroxisomes in autism spectrum disorder. Epigenomics 2022; 14:1015-1027. [PMID: 36154275 DOI: 10.2217/epi-2022-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We tested the hypothesis that a subset of patients with autism spectrum disorder (ASD) contains candidate genes with high DNA methylation differences (effective values) that potentially affect one of the two alleles. Materials & methods: Genome-wide DNA methylation comparisons were made on cerebellum samples from 30 patients and 45 controls. Results: 12 genes with high effective values, including GSDMD, MMACHC, SLC6A5 and NKX6-2, implicated in ASD and other neuropsychiatric disorders were identified. Monoallelic promoter methylation and downregulation were observed for SERHL (serine hydrolase-like) and CAT (catalase) genes associated with peroxisome function. Conclusion: These data are consistent with the hypothesis implicating impaired peroxisome function/biogenesis for ASD. A similar approach holds promise for identifying rare epimutations in ASD and other complex disorders.
Collapse
Affiliation(s)
- Anuhya Anne
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Sonal Saxena
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| |
Collapse
|
4
|
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative Stress in Autism Spectrum Disorder-Current Progress of Mechanisms and Biomarkers. Front Psychiatry 2022; 13:813304. [PMID: 35299821 PMCID: PMC8921264 DOI: 10.3389/fpsyt.2022.813304] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. Existing data suggest that early diagnosis and intervention can improve ASD outcomes. However, the causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. More mechanisms and biomarkers of autism have been found with the development of advanced technology such as mass spectrometry. Many recent studies have found a link between ASD and elevated oxidative stress, which may play a role in its development. ASD is caused by oxidative stress in several ways, including protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated oxidative stress in ASD, various biomarkers have been developed and employed. This article summarizes recent studies about the mechanisms and biomarkers of oxidative stress. Potential biomarkers identified in this study could be used for early diagnosis and evaluation of ASD intervention, as well as to inform and target ASD pharmacological or nutritional treatment interventions.
Collapse
Affiliation(s)
- Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Imataka G, Yui K, Shiko Y, Kawasaki Y, Sasaki H, Shiroki R, Yoshihara S. Urinary and Plasma Antioxidants in Behavioral Symptoms of Individuals With Autism Spectrum Disorder. Front Psychiatry 2021; 12:684445. [PMID: 34539458 PMCID: PMC8446379 DOI: 10.3389/fpsyt.2021.684445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The balance between antioxidant capacity and oxidative stress-induced free radicals may be crucial in the pathophysiological development factor of autism spectrum disorder (ASD). We measured the following urinary and plasma biomarker levels of oxidative stress and antioxidants. As urinary biomarkers, (1) hexanoyl-lysine (HEL), which is a new biomarker of oxidative stress, (2) the total antioxidant capacity (TAC), and (3) 8-hydroxy-2'-deoxyguanosine (8-OHdG), as a product of oxidative modifications to DNA; and the plasma levels of (4) the antioxidant protein superoxide dismutase (SOD), which is the crucial defense again oxygen reactive species, and (5) transferrin and (6) ceruloplasmin, which are biomarkers of iron and copper neurotransmission and oxidant-antioxidant systems. We examined the relationship between these urinary and plasma biomarkers and behavioral symptoms in 19 individuals with ASD (mean age, 10.8 ± 5.2 years) and 10 age-matched healthy controls (mean age, 14.2 ± 7.0 years). Behavioral symptoms were estimated using the Aberrant Behavior Checklist (ABC). Urinary TAC levels were significantly lower, whereas urinary HEL levels were significantly increased in the ASD group as compared with the control group. The five ABC subscale and total scores were significantly raised in the autism group than in the control group. The results of a linear regression analysis revealed that plasma SOD levels may be a more accurate predictor of differences in ABC scores between individuals with ASD and control individuals. The present study firstly revealed the important findings that the cooperation between the urinary antioxidant TAC and plasma SOD levels may contribute to the ABC subscale scores of stereotypy. Urinary TAC activity and antioxidant protein SOD may be associated with incomplete mineral body store and antioxidant-related transcription factor and browning reactions. Consequently, a critical imbalance between TAC urinary levels and plasma SOD levels may be an important contributor to autistic behavioral symptoms.
Collapse
Affiliation(s)
- George Imataka
- Department of Pediatrics, Dokkyo Medical University, Mibu, Japan
| | - Kunio Yui
- Department of Urology, Fujita Health University, Toyoake, Japan
| | - Yuki Shiko
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hitomi Sasaki
- Department of Urology, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology, Fujita Health University, Toyoake, Japan
| | | |
Collapse
|
6
|
Ayaydin H, Akaltun İ, Koyuncu İ, Çelİk H, Kİrmİt A, Takatak H. High KEAP1, NRF2 and Low HO-1 Serum Levels in Children with Autism. ACTA ACUST UNITED AC 2020; 57:274-279. [PMID: 33354117 DOI: 10.29399/npa.24862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Introduction The purpose of our study was to investigate heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related factor 2 (NRF2), and kelch-like ECH-associated protein 1 (KEAP1) levels in children with autism spectrum disorder (ASD) and to reveal their association with the severity of autism. Methods This study measured serum HO-1, KEAP1, and NRF2 levels in 43 patients with ASD (aged 3-12 years) and in 41 age- and gender-matched healthy controls. ASD severity was rated using the Childhood Autism Rating Scale (CARS). HO-1, KEAP1, and NRF2 levels were determined in the biochemistry laboratory using the ELISA technique. Results HO-1 levels were significantly lower in patients aged 3-12 years compared to controls aged 3-12, while KEAP1 and NRF2 levels were significantly higher (p=0.020, p<0.001, and p=0.017, respectively). No correlation was determined between ASD severity on the basis of total CARS scores and HO-1, KEAP1 or NRF2 (p>0.05). Conclusion This study suggests that oxidative stress is higher in children with ASD and that HO-1 levels are insufficient to achieve oxidative balance.
Collapse
Affiliation(s)
- Hamza Ayaydin
- Harran University Faculty of Medicine, Department of Child and Adolescent Psychiatry, Şanlıurfa, Turkey
| | - İsmail Akaltun
- Gaziantep Dr. Ersin Arslan Training and Research Hospital, Department of Child and Adolescent Psychiatry, Gaziantep, Turkey
| | - İsmail Koyuncu
- Harran University Faculty of Medicine, Department of Biochemistry, Şanlıurfa, Turkey
| | - Hakim Çelİk
- Harran University Faculty of Medicine, Department of Physiology, Şanlıurfa, Turkey
| | - Adnan Kİrmİt
- Harran University Faculty of Medicine, Department of Biochemistry, Şanlıurfa, Turkey
| | - Hatice Takatak
- Harran University Faculty of Medicine, Department of Child and Adolescent Psychiatry, Şanlıurfa, Turkey
| |
Collapse
|
7
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160:149-162. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo I Rana, Norway.
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Božena Hosnedlová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic; Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Olga P Ajsuvakova
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Margarita G Skalnaya
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Afaf El-Ansary
- Medicinal Chemistry Department, King Saud University, Riyadh, Saudi Arabia; Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Autism Research and Treatment Center, Riyadh, Saudi Arabia; CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia; Federal Research Centre of Biological Systems, Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
8
|
Sa-Carneiro F, Calhau C, Coelho R, Figueiredo-Braga M. Putative shared mechanisms in autism spectrum disorders and attention deficit hyperactivity disorder, a systematic review of the role of oxidative stress. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Osredkar J, Gosar D, Maček J, Kumer K, Fabjan T, Finderle P, Šterpin S, Zupan M, Jekovec Vrhovšek M. Urinary Markers of Oxidative Stress in Children with Autism Spectrum Disorder (ASD). Antioxidants (Basel) 2019; 8:antiox8060187. [PMID: 31226814 PMCID: PMC6616645 DOI: 10.3390/antiox8060187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a developmental disorder characterized by deficits in social interaction, restricted interest and repetitive behavior. Oxidative stress in response to environmental exposure plays a role in virtually every human disease and represents a significant avenue of research into the etiology of ASD. The aim of this study was to explore the diagnostic utility of four urinary biomarkers of oxidative stress. Methods: One hundred and thirty-nine (139) children and adolescents with ASD (89% male, average age = 10.0 years, age range = 2.1 to 18.1 years) and 47 healthy children and adolescents (49% male, average age 9.2, age range = 2.5 to 20.8 years) were recruited for this study. Their urinary 8-OH-dG, 8-isoprostane, dityrosine and hexanoil-lisine were determined by using the ELISA method. Urinary creatinine was determined with the kinetic Jaffee reaction and was used to normalize all biochemical measurements. Non-parametric tests and support vector machines (SVM) with three different kernel functions (linear, radial, polynomial) were used to explore and optimize the multivariate prediction of an ASD diagnosis based on the collected biochemical measurements. The SVM models were first trained using data from a random subset of children and adolescents from the ASD group (n = 70, 90% male, average age = 9.7 years, age range = 2.1 to 17.8 years) and the control group (n = 24, 45.8% male, average age = 9.4 years, age range = 2.5 to 20.8 years) using bootstrapping, with additional synthetic minority over-sampling (SMOTE), which was utilized because of unbalanced data. The computed SVM models were then validated using the remaining data from children and adolescents from the ASD (n = 69, 88% male, average age = 10.2 years, age range = 4.3 to 18.1 years) and the control group (n = 23, 52.2% male, average age = 8.9 years, age range = 2.6 to 16.7 years). Results: Using a non-parametric test, we found a trend showing that the urinary 8-OH-dG concentration was lower in children with ASD compared to the control group (unadjusted p = 0.085). When all four biochemical measurements were combined using SVMs with a radial kernel function, we could predict an ASD diagnosis with a balanced accuracy of 73.4%, thereby accounting for an estimated 20.8% of variance (p < 0.001). The predictive accuracy expressed as the area under the curve (AUC) was solid (95% CI = 0.691-0.908). Using the validation data, we achieved significantly lower rates of classification accuracy as expressed by the balanced accuracy (60.1%), the AUC (95% CI = 0.502-0.781) and the percentage of explained variance (R2 = 3.8%). Although the radial SVMs showed less predictive power using the validation data, they do, together with ratings of standardized SVM variable importance, provide some indication that urinary levels of 8-OH-dG and 8-isoprostane are predictive of an ASD diagnosis. Conclusions: Our results indicate that the examined urinary biomarkers in combination may differentiate children with ASD from healthy peers to a significant extent. However, the etiological importance of these findings is difficult to assesses, due to the high-dimensional nature of SVMs and a radial kernel function. Nonetheless, our results show that machine learning methods may provide significant insight into ASD and other disorders that could be related to oxidative stress.
Collapse
Affiliation(s)
- Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - David Gosar
- Department of Child, Adolescent and Developmental Neurology, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| | - Jerneja Maček
- Center for Autism, Unit of Child Psychiatry, University Children's Hospital, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| | - Kristina Kumer
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| | - Teja Fabjan
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| | - Petra Finderle
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| | - Saša Šterpin
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| | - Mojca Zupan
- Blood Transfusion Centre of Slovenia, Šlajmerjeva ulica 6, 1000 Ljubljana, Slovenia.
| | - Maja Jekovec Vrhovšek
- Center for Autism, Unit of Child Psychiatry, University Children's Hospital, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Ghodsi R, Kheirouri S. Positive Association Between Plasma Levels of Advanced Glycation and Precursor of Lipoxidation end Products with Gastrointestinal Problems in Children with Autism. Curr Pediatr Rev 2019; 15:184-190. [PMID: 31264551 DOI: 10.2174/1573396315666190628141333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased oxidative stress has been reported in autistic patients besides, evidence linking oxidative stress to enhancement of advanced glycation and lipoxidation end products (AGEs and ALEs) and their precursors. OBJECTIVE This study aimed to compare the plasma levels of the AGEs and precursors of ALEs in autistic and healthy children and to evaluate their relationship with autism comorbidities. METHODS In this descriptive study, 54 children, 36 autistic and 18 healthy participated. Plasma levels of AGEs and precursors of ALEs were measured by ELISA method. Severity of autism and Gastrointestinal (GI) disorders were measured by GARSII questionnaire and QPGS-ROME III questionnaire, respectively. RESULTS Plasma levels of AGEs and precursors of ALEs in autistic children were comparable with healthy children. Plasma levels of AGEs and precursor of ALEs were correlated with physical activity and GI disorders in autistic children. A strong association was also found between AGEs and precursors of ALEs. CONCLUSION The results indicate that AGEs and ALEs have a strong correlation together but the AGEs and precursor of ALEs in autistic children are not different from healthy children.
Collapse
Affiliation(s)
- Ramin Ghodsi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Ghadermazi R, Khoshjou F, Hossini Zijoud SM, Behrooj H, Kheiripour N, Ganji M, Moridi H, Mohammadi M, Ranjbar A. Hepatoprotective effect of tempol on oxidative toxic stress in STZ-induced diabetic rats. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1313277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Farhad Khoshjou
- Urology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran,
| | | | - Hamid Behrooj
- Department of Biochemistry, Faculty of Medicine, and
| | | | | | - Heresh Moridi
- Department of Biochemistry, Faculty of Medicine, and
| | - Mojdeh Mohammadi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Yui K, Tanuma N, Yamada H, Kawasaki Y. Decreased total antioxidant capacity has a larger effect size than increased oxidant levels in urine in individuals with autism spectrum disorder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9635-9644. [PMID: 28247276 DOI: 10.1007/s11356-017-8595-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Oxidant/antioxidant imbalance may contribute to the pathophysiology of autism spectrum disorder (ASD). We assayed urinary levels of oxidative stress related biomarkers, hexanoyl-lysine (HEL), total antioxidant capacity (TAOC), the DNA methylation biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG), and plasma levels of superoxide dismutase (SOD), which is major antioxidant enzyme. We examined the relationship between these four biomarkers and social responsiveness in 20 individuals with ASD and in 11 healthy controls. The sex (ASD group, 7/13 vs. control group, 4/7) and age distributions (ASD group, 10.7 ± 5.0 years vs. control group, 14.7 ± 6.3 years) were not significantly different between the groups. Social responsiveness was assessed using the social responsiveness scale (SRS). We used standardized regression coefficients to measure the effect size. The ASD group exhibited significantly lower urinary TAOC levels and significantly elevated urinary HEL levels than the control group. Urinary 8-OHdG levels and plasma SOD levels were not significantly different between the groups. The ASD group showed significantly higher SRS scores than the control group. Plasma SOD levels correlated significantly with urinary TAOC levels. Standardized regression coefficients revealed that TAOC levels had a larger effect size than HEL levels in urine. This study firstly reveals that an imbalance between urinary HEL and TAOC levels in favor of urinary TAOC levels may contribute to impaired social responsiveness in individuals with ASD. Plasma SOD levels may also affect urinary TAOC levels.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Nasoyuki Tanuma
- Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center for the Disabled, Tokyo, 183-8553, Japan
| | - Hiroshi Yamada
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yohei Kawasaki
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
13
|
Yui K, Tanuma N, Yamada H, Kawasaki Y. Reduced endogenous urinary total antioxidant power and its relation of plasma antioxidant activity of superoxide dismutase in individuals with autism spectrum disorder. Int J Dev Neurosci 2016; 60:70-77. [PMID: 27554135 DOI: 10.1016/j.ijdevneu.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/12/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Individuals with autism spectrum disorders (ASD) have impaired detoxification capacity. Investigating the neurobiological bases of impaired antioxidant capacity is thus a research priority in the pathophysiology of ASD. We measured the urinary levels of hexanoyl-lysine (HEL) which is a new oxidative stress biomarker, total antioxidant power (TAP) and DNA methylation biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the plasma levels of superoxide dismutase (SOD), which is a major antioxidant enzyme. We examined whether the urinary levels of these enzymes and biomarkers may be related to symptoms of social impairment in 20 individuals with ASD (meanage,11.1±5.2years) and 12 age- and gender-matched healthy controls (meanage,14.3±6.2years). Symptoms of social impairment were assessed using the Social Responsiveness Scale (SRS). The dietary TAP of the fruit juice, chocolate, cookies, biscuits, jam and marmalade were significantly higher in the ASD group than in the control group, although the intake of nutrients was not significantly different between the groups. The urinary TAP levels were significantly lower in the ASD group than in the control group. There were no significantly differences in urinary HEL and 8-OHdG levels between the ASD and control groups. The SRS scores were significantly higher in the ASD group than in the control group. Stepwise regression analysis revealed that urinary TAP levels and plasma SOD levels can differences in the biomarkers and the SRS scores between the ASD group and the control group. The endogenous antioxidant capacity may be deficient without altered urinary HEL and 8-OHdG levels in individuals with ASD. The plasma SOD levels may be related to reduced endogenous antioxidant capacity.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu 321-0293, Tochigi, Japan; Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Nasoyuki Tanuma
- Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center for the Disabled, Tokyo 183-8553, Japan
| | - Hiroshi Yamada
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yohei Kawasaki
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
14
|
Al-Saleh I, Elkhatib R, Al-Rouqi R, Abduljabbar M, Eltabache C, Al-Rajudi T, Nester M. Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant's neurodevelopment. Int J Hyg Environ Health 2016; 219:898-914. [PMID: 27453562 DOI: 10.1016/j.ijheh.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023]
Abstract
This study examined the role of oxidative stress due to mercury (Hg) exposure on infant's neurodevelopmental performance. A total of 944 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers in Riyadh City. Total mercury (Hg) was measured in mothers and infants urine and hair samples, as well as mother's blood and breast milk. Methylmercury (MeHg) was determined in the mothers and infants' hair and mother's blood. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and porphyrins were used to assess oxidative stress. The infant's neurodevelopment was evaluated using Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status. The median total Hg levels in mother's urine, infant's urine, mother's hair, infant's hair, and mother's blood and breast milk were 0.995μg/l, 0.716μg/l, 0.118μg/g dw, 0.101μg/g dw, 0.635μg/l, and 0.884μg/l respectively. The median MeHg levels in mother's hair, infant's hair, and mother's blood were 0.132μg/g dw, 0.091μg/g dw, and 2.341μg/l respectively. A significant interrelationship between mothers and infants Hg measures in various matrices was noted. This suggests that mother's exposure to different forms of Hg (total and/or MeHg) from various sources contributed significantly to the metal body burden of their respective infants. Even though Hg exposure was low, it induced high oxidative stress in mothers and infants. The influence of multiplicative interaction terms between Hg measures and oxidative stress biomarkers was tested using multiple regression analysis. Significant interactions between the urinary Hg levels in mothers and infants and oxidative stress biomarkers (8-OHdG and MDA) were noted. The MeHg levels in mother-infant hair revealed similar interaction patterns. The p-values for both were below 0.001. These observations suggest that the exposure of our infants to Hg via mothers either during pregnancy and/or neonatal life, promoted oxidative stress that might have played a role in infant neurodevelopmental delays that we reported previously. The results confirmed that the interaction between infant's MeHg in hair and 8-OHdG and MDA levels was significantly associated with a delay in DDST-II performance (ß=-0.188, p=0.028). This finding provides an insight into the potential consequences of Hg-induced oxidative stress to infant's cognitive neurodevelopment for the first time. This observation still needs future studies to be validated. Given the low MeHg levels in our population, these findings are of particular importance.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Chafica Eltabache
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Michael Nester
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
15
|
Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans. PATHOLOGY RESEARCH INTERNATIONAL 2016; 2016:5480267. [PMID: 26966611 PMCID: PMC4761395 DOI: 10.1155/2016/5480267] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022]
Abstract
Total Antioxidant Capacity (TAC) is a biomarker often used in order to investigate oxidative stress in many pathological conditions. Saliva and urine can be collected noninvasively and represent attractive diagnostic fluids for detecting biomarkers of various pathological conditions. The reviewed case-control and intervention studies that measured salivary or urinary TAC revealed that diseases, antioxidant foods, or supplements and age, gender, and lifestyle factors influenced salivary or urinary TAC. Salivary and urinary TAC were particularly affected by oral or renal status, respectively, as well as by infection; therefore these factors must be taken into account in both case-control and intervention studies. Furthermore, some considerations on sample collection and normalization strategies could be made. In particular, unstimulated saliva could be the better approach to measure salivary TAC, whereas 24 h or spontaneous urine collection should be chosen on the basis of the study outcome and of the creatinine clearance. Finally, the uric acid-independent TAC could be the better approach to evaluate red-ox status of body, in particular after nutritional interventions and in diseases associated with hyperuricaemia.
Collapse
|