1
|
Kapellos TS, Conlon TM, Yildirim AÖ, Lehmann M. The impact of the immune system on lung injury and regeneration in COPD. Eur Respir J 2023; 62:2300589. [PMID: 37652569 DOI: 10.1183/13993003.00589-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
COPD is a devastating respiratory condition that manifests via persistent inflammation, emphysema development and small airway remodelling. Lung regeneration is defined as the ability of the lung to repair itself after injury by the proliferation and differentiation of progenitor cell populations, and becomes impaired in the COPD lung as a consequence of cell intrinsic epithelial stem cell defects and signals from the micro-environment. Although the loss of structural integrity and lung regenerative capacity are critical for disease progression, our understanding of the cellular players and molecular pathways that hamper regeneration in COPD remains limited. Intriguingly, despite being a key driver of COPD pathogenesis, the role of the immune system in regulating lung regenerative mechanisms is understudied. In this review, we summarise recent evidence on the contribution of immune cells to lung injury and regeneration. We focus on four main axes: 1) the mechanisms via which myeloid cells cause alveolar degradation; 2) the formation of tertiary lymphoid structures and the production of autoreactive antibodies; 3) the consequences of inefficient apoptotic cell removal; and 4) the effects of innate and adaptive immune cell signalling on alveolar epithelial proliferation and differentiation. We finally provide insight on how recent technological advances in omics technologies and human ex vivo lung models can delineate immune cell-epithelium cross-talk and expedite precision pro-regenerative approaches toward reprogramming the alveolar immune niche to treat COPD.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps University of Marburg, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
2
|
Efferocytosis in lung mucosae: implications for health and disease. Immunol Lett 2022; 248:109-118. [PMID: 35843361 DOI: 10.1016/j.imlet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Efferocytosis is imperative to maintain lung homeostasis and control inflammation. Populations of lung macrophages are the main efferocytes in this tissue, responsible for controlling immune responses and avoiding unrestrained inflammation and autoimmunity through the expression of a plethora of receptors that recognize multiple 'eat me' signals on apoptotic cells. Efferocytosis is essentially anti-inflammatory and tolerogenic. However, in some situations, apoptotic cells phagocytosis can elicit inflammatory and immunogenic immune responses. Here, we summarized the current knowledge of the mechanisms of efferocytosis, and how any abnormality in this process may have an important contribution to the lung pathophysiology of many chronic inflammatory lung diseases such as asthma, acute lung injury, chronic obstructive pulmonary disease, and cystic fibrosis. Further, we consider the consequences of the dual role of efferocytosis on the susceptibility or resistance to pulmonary microbial infections. Understanding how efferocytosis works in different contexts will be useful to the development of new and more effective strategies to control the diversity of lung diseases.
Collapse
|
3
|
Assessing the Impact of Gender and COPD on the Incidence and Mortality of Hospital-Acquired Pneumonia. A Retrospective Cohort Study Using the Spanish National Discharge Database (2016-2019). J Clin Med 2021; 10:jcm10225453. [PMID: 34830733 PMCID: PMC8625205 DOI: 10.3390/jcm10225453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We aim to analyze incidence and outcomes of patients hospitalized with hospital-acquired pneumonia (HAP) according to chronic obstructive pulmonary disease (COPD) status and sex in Spain (2016-2019). METHODS We conducted a retrospective cohort study using national hospital discharge data of patients ≥40 years with a primary diagnosis of HAP, using the specific diagnostics of non-ventilator (NV)-HAP and ventilator-associated pneumonia (VAP). RESULTS We identified 37,029 patients with HAP ((NV)-HAP 87.28%, VAP 12.72%), 13.40% with COPD. HAP incidence increased over time, but only in subjects without COPD (p < 0.001). In women, incidence of HAP and (NV)-HAP was similar regardless of COPD status, but VAP incidence was lower in COPD women (p = 0.007). In men, the incidence of (NV)-HAP was significantly higher in those with COPD, while VAP incidence was lower in COPD men (p < 0.001). The in-hospital mortality (IHM) was similar in men and women with and without COPD. The risk of dying in hospital increased with age, congestive heart failure, cancer, and dialysis among men and women with COPD. Men that underwent surgery had a lower risk of IHM. VAP increased 2.58-times the probability of dying in men and women. Finally, sex was not associated with IHM among COPD patients. CONCLUSIONS Incidence of HAP was significantly higher in COPD patients than in those without COPD, at the expense of (NV)-HAP but not of VAP. When stratifying by sex, we found that the difference was caused by men. IHM was similar in COPD and non-COPD patients, with no significant change overtime. In addition, sex was not associated with IHM.
Collapse
|
4
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
5
|
Ween MP, Hamon R, Macowan MG, Thredgold L, Reynolds PN, Hodge SJ. Effects of E‐cigarette E‐liquid components on bronchial epithelial cells: Demonstration of dysfunctional efferocytosis. Respirology 2019; 25:620-628. [DOI: 10.1111/resp.13696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 06/16/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Miranda P. Ween
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Rhys Hamon
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Matthew G. Macowan
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Leigh Thredgold
- Department of Occupational and Environmental Health, School of Public HealthUniversity of Adelaide Adelaide SA Australia
| | - Paul N. Reynolds
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Sandra J. Hodge
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| |
Collapse
|
6
|
Fujino N, Brand OJ, Morgan DJ, Fujimori T, Grabiec AM, Jagger CP, Maciewicz RA, Yamada M, Itakura K, Sugiura H, Ichinose M, Hussell T. Sensing of apoptotic cells through Axl causes lung basal cell proliferation in inflammatory diseases. J Exp Med 2019; 216:2184-2201. [PMID: 31289116 PMCID: PMC6719415 DOI: 10.1084/jem.20171978] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial cell proliferation, division, and differentiation are critical for barrier repair following inflammation, but the initial trigger for this process is unknown. Here we define that sensing of apoptotic cells by the TAM receptor tyrosine kinase Axl is a critical indicator for tracheal basal cell expansion, cell cycle reentry, and symmetrical cell division. Furthermore, once the pool of tracheal basal cells has expanded, silencing of Axl is required for their differentiation. Genetic depletion of Axl triggers asymmetrical cell division, leading to epithelial differentiation and ciliated cell regeneration. This discovery has implications for conditions associated with epithelial barrier dysfunction, basal cell hyperplasia, and continued turnover of dying cells in patients with chronic inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Naoya Fujino
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
| | - Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Christopher P Jagger
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - Rose A Maciewicz
- Respiratory, Inflammation, and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Interleukin-35 expression protects against cigarette smoke-induced lung inflammation in mice. Biomed Pharmacother 2018; 110:727-732. [PMID: 30554110 DOI: 10.1016/j.biopha.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS) is a very important cause of pulmonary inflammatory diseases. Interleukin (IL)-35 is a novel anti-inflammatory cytokine but its role in CS-mediated lung inflammation remains unclear. In the present study, we examined the effect of IL-35 expression on CS-induced lung inflammation in mice. A plasmid DNA expressing IL-35 was injected into mice via a hydrodynamic-based gene delivery that were subsequently exposed to CS three times a day for 5 days. We found that IL-35 expression inhibited pulmonary inflammatory infiltration, lung tissue lesions, mucus secretion, and myeloperoxidase activity in CS-treated mice. Moreover, IL-35 expression decreased the production of IL-1β, tumor necrosis factor-α, IL-6, and IL-17, but increased the level of IL-10 in bronchoalveolar lavage fluids and lung tissues from CS-challenged mice. These results suggest that in vivo expression of IL-35 can protect against CS-induced lung inflammation and may be a therapeutic target in CS-related pulmonary diseases.
Collapse
|
8
|
Lv XX, Liu SS, Li K, Cui B, Liu C, Hu ZW. Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice. Oncotarget 2017; 8:74720-74735. [PMID: 29088819 PMCID: PMC5650374 DOI: 10.18632/oncotarget.20353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023] Open
Abstract
Neutrophils are the most important effector cells during the development of chronic obstructive pulmonary disease (COPD). Although neutrophil elastase is critical in cigarette smoke (CS)-induced lung parenchyma, the mechanism by which CS triggers elastase release from neutrophils remains unclear. Here we report that CS induction of autophagy in neutrophils by activating platelet- activating factor receptor (PAFR) promotes COPD progression in mouse. We found that the dead neutrophils were increased in bronchoalveolar lavage fluid from CS-exposed mice. Blocking PAFR suppressed the CS-induced autophagy in neutrophils, protected neutrophils from death, and reduced elastase release. Mechanistically, CS enhanced ROS production and High mobility group box 1 (HMGB1) expression through activation of PAFR. The elevated HMGB1 interacted with beclin1, which promoted the dissociation of Bcl-2 from beclin1 and the assembly of autophagy core complex. Moreover, the antagonism of PAFR by rupatadine, a prescription PAFR inhibitor, protected against the development of emphysema, and reduced the autophagic death of neutrophils after CS exposure. These results suggest that CS contributes to the pathogenesis of COPD partly by inducing a PAFR-dependent autophagic death of neutrophils. Therefore, PAFR may be a therapeutic target for COPD and inhibition of PAFR may provide potential therapeutic benefits in the treatment of patients with COPD.
Collapse
Affiliation(s)
- Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Chang Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| |
Collapse
|
9
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|
10
|
Avriel A, Rozenberg D, Raviv Y, Heimer D, Bar-Shai A, Gavish R, Sheynin J, Douvdevani A. Prognostic utility of admission cell-free DNA levels in patients with chronic obstructive pulmonary disease exacerbations. Int J Chron Obstruct Pulmon Dis 2016; 11:3153-3161. [PMID: 28003743 PMCID: PMC5158140 DOI: 10.2147/copd.s113256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Chronic obstructive pulmonary disease exacerbations (COPDEs) are associated with increased morbidity and mortality. Cell-free DNA (cfDNA) is a novel biomarker associated with clinical outcomes in several disease states but has not been studied in COPD. The objectives of this study were to assess cfDNA levels during a COPDE, to evaluate the association of cfDNA with clinical parameters and to explore the prognostic implications of cfDNA levels on long-term survival. Methods This was an observational study that assessed cfDNA levels in patients admitted to hospital for a COPDE. Plasma cfDNA levels of COPDE patients were compared to those of matched stable COPD patients and healthy controls. Multivariable and Cox regression analyses were used to assess the association of cfDNA levels with blood gas parameters and long-term survival. Results A total of 62 patients (46 males, forced expiratory volume in 1 second [FEV1] 38%±13%) were included. The median cfDNA levels on admission for COPDE patients was 1,634 ng/mL (interquartile range [IQR] 1,016–2,319) compared to 781 ng/mL (IQR 523–855) for stable COPD patients, matched for age and disease severity, and 352 ng/mL (IQR 209–636) for healthy controls (P<0.0001, for both comparisons). cfDNA was correlated with partial arterial pressure of carbon dioxide (PaCO2, r=0.35) and pH (r=−0.35), P=0.01 for both comparisons. In a multivariable analysis, PaCO2 was the only independent predictor of cfDNA. Using a cfDNA level of 1,924 ng/mL (threshold for abnormal PaCO2), those with high levels had a trend for increased 5-year mortality risk adjusted for age, sex and FEV1% (hazard ratio 1.92, 95% confidence interval 0.93–3.95, P=0.08). Conclusion Plasma cfDNA might offer a novel technique to identify COPD patients at increased risk of poor outcomes, but the prognostic utility of this measurement requires further study.
Collapse
Affiliation(s)
- Avital Avriel
- Department of Medicine, Pulmonology Institute, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | - Dmitry Rozenberg
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yael Raviv
- Department of Medicine, Pulmonology Institute, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | - Dov Heimer
- Department of Medicine, Pulmonology Institute, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | - Amir Bar-Shai
- Department of Medicine, Pulmonology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv
| | - Rachel Gavish
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Jony Sheynin
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Department of Clinical Biochemistry, Faculty of Health Sciences, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| | - Amos Douvdevani
- Department of Clinical Biochemistry, Faculty of Health Sciences, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
11
|
Yeager RP, Kushman M, Chemerynski S, Weil R, Fu X, White M, Callahan-Lyon P, Rosenfeldt H. Proposed Mode of Action for Acrolein Respiratory Toxicity Associated with Inhaled Tobacco Smoke. Toxicol Sci 2016; 151:347-64. [DOI: 10.1093/toxsci/kfw051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
12
|
Grabiec AM, Hussell T. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Semin Immunopathol 2016; 38:409-23. [PMID: 26957481 PMCID: PMC4896990 DOI: 10.1007/s00281-016-0555-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022]
Abstract
Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called ‘efferocytosis’. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released ‘damage associated molecular patterns’ (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, The University of Manchester, 46 Grafton Street, M13 9NT, Manchester, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, The University of Manchester, 46 Grafton Street, M13 9NT, Manchester, UK.
| |
Collapse
|
13
|
|
14
|
Heijink IH, Pouwels SD, Leijendekker C, de Bruin HG, Zijlstra GJ, van der Vaart H, ten Hacken NHT, van Oosterhout AJM, Nawijn MC, van der Toorn M. Cigarette Smoke–Induced Damage-Associated Molecular Pattern Release from Necrotic Neutrophils Triggers Proinflammatory Mediator Release. Am J Respir Cell Mol Biol 2015; 52:554-62. [DOI: 10.1165/rcmb.2013-0505oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Ishikawa N, Hattori N, Kohno N, Kobayashi A, Hayamizu T, Johnson M. Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls. Int J Chron Obstruct Pulmon Dis 2015; 10:185-92. [PMID: 25670894 PMCID: PMC4315175 DOI: 10.2147/copd.s74557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To assess the importance of inflammation in chronic obstructive pulmonary disease (COPD) by measuring airway and systemic inflammatory biomarkers in Japanese patients with the disease and relevant control groups. PATIENTS AND METHODS This was the first study of its type in Japanese COPD patients. It was a non-treatment study in which 100 participants were enrolled into one of three groups: nonsmoking controls, current or ex-smoking controls, and COPD patients. All participants underwent standard lung function assessments and provided sputum and blood samples from which the numbers of inflammatory cells and concentrations of biomarkers were measured, using standard procedures. RESULTS The overall trends observed in levels of inflammatory cells and biomarkers in sputum and blood in COPD were consistent with previous reports in Western studies. Increasing levels of neutrophils, interleukin 8 (IL-8), surfactant protein D (SP-D), and Krebs von den Lungen 6 (KL-6) in sputum and clara cell 16 (CC-16), high-sensitivity C-reactive protein (hs-CRP), and KL-6 in serum and plasma fibrinogen were seen in the Japanese COPD patients compared with the non-COPD control participants. In sputum, significant correlations were seen between total cell count and matrix metalloproteinase 9 (MMP-9; P<0.001), neutrophils and MMP-9 (P<0.001), macrophages and KL-6 (P<0.01), total cell count and IL-8 (P<0.05), neutrophils and IL-8 (P<0.05), and macrophages and MMP-9 (P<0.05). Significant correlations were also observed between some inflammatory cells in sputum and biomarkers in serum, with the most significant between serum CC-16 and both total cell count (P<0.005) and neutrophils (P<0.005) in sputum. CONCLUSION These results provide evidence for the first time that COPD in Japanese patients is a multicomponent disease, involving both airway and systemic inflammation, in addition to airway obstruction. Therefore, intervention with anti-inflammatory therapy may provide additional benefit in disease management of COPD in Japan.
Collapse
Affiliation(s)
- Nobuhisa Ishikawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Akihiro Kobayashi
- Biomedical Data Science Department, GlaxoSmithKline Shibuya-ku, Tokyo, Japan
| | - Tomoyuki Hayamizu
- Medical Affairs Respiratory Department, GlaxoSmithKline Shibuya-ku, Tokyo, Japan
| | | |
Collapse
|
16
|
Hurley K, Lacey N, O’Dwyer CA, Bergin DA, McElvaney OJ, O’Brien ME, McElvaney OF, Reeves EP, McElvaney NG. Alpha-1 Antitrypsin Augmentation Therapy Corrects Accelerated Neutrophil Apoptosis in Deficient Individuals. THE JOURNAL OF IMMUNOLOGY 2014; 193:3978-91. [DOI: 10.4049/jimmunol.1400132] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Abstract
Neutrophils are central to the pathogenesis of COPD, releasing a range of pro-inflammatory and tissue destructive mediators. Sputum neutrophil numbers are elevated in COPD patients compared to healthy controls. We critically appraise the potential of sputum neutrophils as a biomarker in COPD. We show that there is insufficient evidence to support the use of this biomarker to define a phenotype of patients with more severe disease characteristics or a different prognosis. However, sputum neutrophil measurements can be used to measure the effects of anti-inflammatory drugs for the treatment of COPD.
Collapse
Affiliation(s)
- Vandana Gupta
- University of Manchester, Medicines Evaluation Unit, University Hospital Of South Manchester Foundation Trust, Manchester, M23 9QZ, UK.
| | | |
Collapse
|
18
|
Stockley JA, Walton GM, Lord JM, Sapey E. Aberrant neutrophil functions in stable chronic obstructive pulmonary disease: the neutrophil as an immunotherapeutic target. Int Immunopharmacol 2013; 17:1211-7. [PMID: 23994347 DOI: 10.1016/j.intimp.2013.05.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/31/2013] [Indexed: 01/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, progressive and debilitating chronic inflammatory condition affecting the lungs, with significant systemic manifestations and co-morbidities. Smoking cigarettes is the main risk factor, but only a fifth of smokers have clinically significant airflow obstruction and the inflammation persists after smoking cessation. This suggests that smoking (and exposure to other inhaled toxins) may be necessary but not sufficient to cause COPD. Neutrophils are believed central to COPD and their accumulation and degranulation are associated with tissue damage, increased inflammation and disordered tissue repair. It was assumed that neutrophil activity and function were appropriate in COPD, responding to the presence of high levels of inflammation in the lung. However more recent studies of neutrophil function (including migration, reactive oxygen species generation, degranulation, phagocytosis and extracellular trap (NET) production) suggest that there is a general impairment in COPD neutrophil responses that predispose towards increased inflammation and reduced bacterial clearance. This may be amenable to correction and manipulating neutrophil intracellular pathways (such as phosphoinositide-3-kinase signalling) appears to restore some key COPD neutrophil responses. Targeting neutrophil intra-cellular signalling may provide a means to normalise neutrophil behaviour in COPD. This could lead to improvements in disease outcomes by reducing extraneous inflammatory burden. However further studies are needed to determine if these findings are relevant in vivo and whether this would impact positively upon health and disease.
Collapse
Affiliation(s)
- James A Stockley
- Centre for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
19
|
Hoenderdos K, Condliffe A. The Neutrophil in Chronic Obstructive Pulmonary Disease. Too Little, Too Late or Too Much, Too Soon? Am J Respir Cell Mol Biol 2013; 48:531-9. [DOI: 10.1165/rcmb.2012-0492tr] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
20
|
Blidberg K, Palmberg L, James A, Billing B, Henriksson E, Lantz AS, Larsson K, Dahlén B. Adhesion molecules in subjects with COPD and healthy non-smokers: a cross sectional parallel group study. Respir Res 2013; 14:47. [PMID: 23635004 PMCID: PMC3669051 DOI: 10.1186/1465-9921-14-47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/24/2013] [Indexed: 01/13/2023] Open
Abstract
Background The aim of the study was to investigate how the expression of adhesion molecules changes as neutrophils migrate from the circulation to the lung and if these changes differ between non-smoking subjects and smokers with and without COPD. Methods Non-smoking healthy subjects (n=22), smokers without (n=21) and with COPD (n=18) were included. Neutrophils from peripheral blood, sputum and bronchial biopsies were analysed for cell surface expression of adhesion molecules (CD11b, CD62L, CD162). Serum, sputum supernatant and BAL-fluid were analysed for soluble adhesion molecules (ICAM-1, -3, E-selectin, P-selectin, VCAM-1, PECAM-1). Results Expression of CD11b was increased on circulating neutrophils from smokers with COPD. It was also increased on sputum neutrophils in both smokers groups, but not in non-smokers, as compared to circulating neutrophils. Serum ICAM-1 was higher in the COPD group compared to the other two groups (p<0.05) and PECAM-1 was lower in smokers without COPD than in non-smoking controls and the COPD group (p<0.05). In BAL-fluid ICAM-1 was lower in the COPD group than in the other groups (p<0.05). Conclusions Thus, our data strongly support the involvement of a systemic component in COPD and demonstrate that in smokers neutrophils are activated to a greater extent at the point of transition from the circulation into the lungs than in non-smokers.
Collapse
Affiliation(s)
- Kristin Blidberg
- Lung and Allergy Research, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang J, He J, Xia J, Chen Z, Chen X. Delayed apoptosis by neutrophils from COPD patients is associated with altered Bak, Bcl-xl, and Mcl-1 mRNA expression. Diagn Pathol 2012; 7:65. [PMID: 22686245 PMCID: PMC3488503 DOI: 10.1186/1746-1596-7-65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/30/2012] [Indexed: 01/13/2023] Open
Abstract
Background Delayed neutrophil apoptosis may be an important factor in the persistent inflammation associated with chronic obstructive pulmonary disease (COPD). Bcl-2 family proteins are important regulators of neutrophil apoptosis. We determined the mRNA levels of pro-apoptotic Bak and anti-aptototic Bcl-xl and Mcl-1 members of the Bcl-2 family in unstimulated peripheral blood neutrophils from patients with mild to moderate COPD and compared these to neutrophils from healthy controls. Methods Neutrophils were isolated from peripheral blood samples of 47 COPD patients (smokers: N = 24) and 47 healthy controls (smokers: N = 24). Percentages of apoptotic cells were determined at 4, 24, and 36 h for unstimulated neutrophils cultured in vitro. Neutrophil mRNA expression of Bak, Bcl-xl, and Mcl-1 was determined by real-time polymerase chain reaction (PCR). FEV1 (% predicted) and FVC were determined by spirometry and correlations between mRNA levels and lung function parameters were determined. Results The percentages of apoptotic cells among unstimulated neutrophils from COPD patients were significantly lower compared to cells from controls after 4, 24, and 36 h in culture; smoking history had only a minimal effect on these differences. Unstimulated neutrophils from COPD patients had significantly lower Bak mRNA expression and higher expressions of Bcl-xl and Mcl-1 mRNA than cells from healthy controls. Again, smoking history had only a minimal effect on these trends. Bak mRNA expression was significantly positively correlated with both % predicted FEV1 and the FEV1/FVC ratio, while Bcl-xl and Mcl-1 mRNA expressions were significantly negatively correlated with %predicted FEV1 and the FEV1/FVC ratio. Conclusions The genes for pro-apoptotic Bak, and anti-apoptotic Bcl-xl and Mcl-1 may be important in regulating the delayed neutrophil apoptosis observed in COPD, which may contribute to COPD pathogenesis. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1605269445677066
Collapse
|
22
|
Inoue M, Ishibashi Y, Nogawa H, Yasue T. Carbocisteine promotes phagocytosis of apoptotic cells by alveolar macrophages. Eur J Pharmacol 2011; 677:173-9. [PMID: 22222820 DOI: 10.1016/j.ejphar.2011.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 01/28/2023]
Abstract
Clearance of apoptotic cells, so-called efferocytosis, by alveolar macrophages (AMs) is important for lung homeostasis and is impaired in pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease and asthma. Carbocisteine, a mucoregulatory drug, corrects the contents of fucose in airway mucus and has anti-inflammatory properties in airway inflammation. Thus, we conducted the present study to better understand the anti-inflammatory properties of carbocisteine. First, we induced airway inflammation in mice with lipopolysaccharide intratracheally. Carbocisteine significantly decreased neutrophil numbers in bronchoalveolar lavage fluid at the resolution phase of inflammation, implying the promotion of neutrophil clearance. Then, we investigated whether carbocisteine would enhance the efferocytosis by AMs isolated from mice and found that this drug promoted not only the phagocytosis but also the binding of apoptotic cells to AMs in vitro. Furthermore, carbocisteine decreased the fucose residues stained with fluorescent fucose-binding lectin, Lens culinaris agglutinin, on the cell surface of AMs. We found here that removing fucose residues from cell surfaces of AMs by fucosidase markedly enhanced both the binding and phagocytosis of apoptotic cells. Finally, AMs from mice orally given carbocisteine also promoted both the binding and phagocytosis ex vivo similarly to in vitro. These results suggest that carbocisteine could promote the clearance of apoptotic cells by AMs in airway. In addition, the present findings suggest that the binding and phagocytosis of apoptotic cells may be modulated by fucose residues on the cell surface of AMs.
Collapse
Affiliation(s)
- Masako Inoue
- Development Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan.
| | | | | | | |
Collapse
|
23
|
Plumb J, Gaffey K, Kane B, Malia-Milanes B, Shah R, Bentley A, Ray D, Singh D. Reduced glucocorticoid receptor expression and function in airway neutrophils. Int Immunopharmacol 2011; 12:26-33. [PMID: 22032841 DOI: 10.1016/j.intimp.2011.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/08/2011] [Accepted: 10/06/2011] [Indexed: 12/18/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a glucocorticoid resistant condition characterised by airway neutrophilia. Reduced glucocorticoid receptor (GR) expression in COPD airway neutrophils may be a mechanism that contributes to glucocorticoid resistance. Our objective was to investigate the expression and function of GR within COPD airway neutrophils. Dual-label immunofluorescence was used to analyse airway neutrophil expression of GR within peripheral lung tissue samples (11 COPD patients, 7 healthy non-smokers [NS]) and induced sputum (7 COPD patients, 7 NS). TNFα and CXCL8 release were measured in neutrophils isolated from induced sputum and peripheral blood (7 COPD patients) in the presence of dexamethasone. In lung tissue, GR was abundantly expressed in macrophages and lymphocytes, but very low expression was observed in neutrophils (means 6.8% and 4.3% in COPD patients and NS respectively). Similarly low expression was observed in sputum neutrophils (means 3.8% and 6.9% in COPD patients and NS respectively). In contrast, GR was expressed by 100% of blood neutrophils. Dexamethasone had less suppressive effect on TNFα and CXCL8 production in vitro by neutrophils from induced sputum compared to neutrophils from paired blood samples. Airway neutrophils have low expression of GR in both COPD patients and controls. The effects of glucocorticoids on cytokine production from airway neutrophils are reduced. Increased numbers of airway neutrophils lacking GR may contribute to glucocorticoid resistance in COPD patients.
Collapse
Affiliation(s)
- Jonathan Plumb
- University of Manchester, NIHR Translational Research Facility, Manchester Academic Health Science Centre, University Hospital of South Manchester, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Makris D, Desrousseaux B, Zakynthinos E, Durocher A, Nseir S. The impact of COPD on ICU mortality in patients with ventilator-associated pneumonia. Respir Med 2011; 105:1022-9. [PMID: 21435855 DOI: 10.1016/j.rmed.2011.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the impact of COPD on intensive care unit (ICU) mortality in patients with VAP. METHODS This prospective observational study was performed in a mixed ICU during a 3-year period. Eligible patients received mechanical ventilation for >48 h and met criteria for microbiologically confirmed VAP. Risk factors for ICU mortality were determined using univariate and multivariable analyses. RESULTS Two hundred and fifteen patients with microbiologically confirmed VAP were included. Most VAP episodes were late-onset (88%), and Pseudomonas aeruginosa was the most frequently isolated bacterium (39% of VAP episodes). ICU mortality was significantly lower in non-COPD patients (n = 150) compared to COPD patients (n = 65) (43.3% vs 60%, p = 0.027, OR [95% CI] = 1.96 [1.8-3.54]). Duration (days) of mechanical ventilation and ICU stay median (IQR) in non-COPD patients were 25 (15-42) and 30 (18-48), whereas in COPD patients were 31 (19-45) and 36 (20-48) (p > 0.05). The differences in duration (days) of mechanical ventilation and ICU stay were significant between non-COPD patients and severe COPD (GOLD stage IV) patients (p = 0.001 and p = 0.02, respectively). Multivariable analysis identified COPD [OR (95% CI) 2.58 (1.337-5)], SAPS II [1.024 (1.006-1.024)] and presence of shock at VAP diagnosis [3.72 (1.88-7.39)] as independent risk factors for ICU mortality. CONCLUSION COPD, SAPS II, and shock at VAP diagnosis are independently associated with ICU mortality in patients who present VAP.
Collapse
Affiliation(s)
- Demosthenes Makris
- Intensive Care Unit, Calmette Hospital, University Hospital of Lille, boulevard du Pr Leclercq, 59037 Lille cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Cigarette smoke-exposed neutrophils die unconventionally but are rapidly phagocytosed by macrophages. Cell Death Dis 2011; 2:e131. [PMID: 21412277 PMCID: PMC3101810 DOI: 10.1038/cddis.2011.13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary accumulation of neutrophils is typical for active smokers who are also predisposed to multiple inflammatory and infectious lung diseases. We show that human neutrophil exposure to cigarette smoke extract (CSE) leads to an atypical cell death sharing features of apoptosis, autophagy and necrosis. Accumulation of tar-like substances in autophagosomes is also apparent. Before detection of established cell death markers, CSE-treated neutrophils are effectively recognized and non-phlogistically phagocytosed by monocyte-derived macrophages. Blockade of LOX-1 and scavenger receptor A, but not MARCO or CD36, as well as pre-incubation with oxLDL, inhibited phagocytosis, suggesting that oxLDL-like structures are major phagocytosis signals. Specific lipid (β-carotene and quercetin), but not aqueous, antioxidants increased the pro-phagocytic effects of CSE. In contrast to non-phlogistic phagocytosis, degranulation of secondary granules, as monitored by lactoferrin release, was apparent on CSE exposure, which is likely to promote pulmonary inflammation and tissue degradation. Furthermore, CSE-exposed neutrophils exhibited a compromised ability to ingest the respiratory pathogen, Staphylococcus aureus, which likely contributes to bacterial persistence in the lungs of smokers and is likely to promote further pulmonary recruitment of neutrophils. These data provide mechanistic insight into the lack of accumulation of apoptotic neutrophil populations in the lungs of smokers and their increased susceptibility to degradative pulmonary diseases and bacterial infections.
Collapse
|
26
|
Krysko O, Vandenabeele P, Krysko DV, Bachert C. Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis 2010; 15:1137-46. [PMID: 20449769 DOI: 10.1007/s10495-010-0504-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phagocytosis of dying cells is a complex and dynamic process coordinated by the interaction of many surface molecules, adaptors, and chemotactic molecules, and it is controlled at multiple levels. This well regulated clearance process is of utmost importance for the development and homeostasis of organisms because defective or inefficient phagocytosis may contribute to human pathologies. In this review we discuss recent advances in the knowledge of the molecular interactions involved in recognition and clearance of apoptotic cells and how derangement of these processes can contribute to the pathogenesis of chronic airway diseases such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. We will briefly consider how different types of macrophages are implicated in chronic airway diseases. Finally, we will address possible therapeutic strategies, such as the use of macrolide antibiotics and statins, for modulating apoptotic cell clearance.
Collapse
Affiliation(s)
- Olga Krysko
- Department of Oto-Rhino-Laryngology, Ghent University Hospital, UZ Gent, MRB, Belgium.
| | | | | | | |
Collapse
|
27
|
Siganaki M, Koutsopoulos AV, Neofytou E, Vlachaki E, Psarrou M, Soulitzis N, Pentilas N, Schiza S, Siafakas NM, Tzortzaki EG. Deregulation of apoptosis mediators' p53 and bcl2 in lung tissue of COPD patients. Respir Res 2010; 11:46. [PMID: 20423464 PMCID: PMC2873932 DOI: 10.1186/1465-9921-11-46] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/27/2010] [Indexed: 01/23/2023] Open
Abstract
Abnormal apoptotic events in chronic obstructive pulmonary disease (COPD) subvert cellular homeostasis and may play a primary role in its pathogenesis. However, studies in human subjects are limited. p53 and bcl2 protein expression was measured by western blot on lung tissue specimens from 43 subjects (23 COPD smokers and 20 non-COPD smokers), using beta-actin as internal control. Additionally, p53 and bcl2 expression patterns were evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded lung tissue sections from the same individuals. Western blot analysis showed statistically significant increased p53 protein levels in COPD smokers in comparison with non-COPD smokers (p = 0.038), while bcl2 protein levels were not statistically different between the two groups. Lung immunohistochemistry showed increased ratio of positive p53-stained type II pneumocytes/total type II pneumocytes in COPD smokers compared to non-COPD smokers (p = 0.01), whereas the p53 staining ratio in alveolar macrophages and in lymphocyte-like cells did not differ statistically between the two groups. On the other hand, bcl2 expression did not differ between the two groups in all three cell types. The increased expression of pro-apoptotic p53 in type II pneumocytes of COPD patients not counterbalanced by the anti-apoptotic bcl2 could reflect increased apoptosis in the alveolar epithelium of COPD patients. Our results confirm previous experiments and support the hypothesis of a disturbance in the balance between the pro- and anti-apoptotic mediators in COPD.
Collapse
Affiliation(s)
- Marianna Siganaki
- Laboratory of Molecular and Cellular Pulmonology, Medical School University of Crete, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Górska K, Maskey-Warzęchowska M, Krenke R. Airway inflammation in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2010; 16:89-96. [DOI: 10.1097/mcp.0b013e3283341ba0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|