1
|
Zhou Z, Shen C, Long W, Chen J, Lu J, Gao L, Hu Y, Yu M, Wu X, Shao J. Simultaneous real-time detection of fractional exhaled nitric oxide and end-tidal carbon dioxide by quantum cascade laser absorption spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123750. [PMID: 38113557 DOI: 10.1016/j.saa.2023.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
The simultaneous detection of fractional exhaled nitric oxide (FeNO) and end-tidal carbon dioxide (ETCO2) is of great importance for the distinguishing and diagnosis of asthma and chronic obstructive pulmonary disease (COPD), providing more comprehensive information on respiratory disorders. This work demonstrates a simultaneous ETCO2 and FeNO detection system based on quantum cascade laser absorption spectroscopy (QCLAS) technology was presented. The system employs wavelength modulation spectroscopy (WMS) technology and the Herriott multi-pass cell, achieving a detection limit of 2.82 ppb for nitric oxide (NO) and 0.05 % for carbon dioxide (CO2). Real-time exhalation measurements were performed on volunteers with varying ETCO2 and FeNO levels, and the results of the test can accurately distinguish whether the corresponding volunteer was healthy, had asthma or COPD. The effect of exhalation flow rate on the concentration of the two gases was explored. A range of expiratory flow rates were tested in the flow rate interval from 1 to 4 L/min, and there was always an inverse relationship between expiratory flow rate and FeNO concentration, but flow rate changes did not affect ETCO2 concentration. The results indicate that this detection system can simultaneously and effectively measure ETCO2 and FeNO concentrations in real-time.
Collapse
Affiliation(s)
- Zhiming Zhou
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
| | - Chenying Shen
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Long
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
| | - Jinling Chen
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
| | - Juncheng Lu
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Gao
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
| | - Yanyan Hu
- Jinhua Guangfu Cancer Hospital, Jinhua 321099, China
| | - Meifang Yu
- Jinhua Guangfu Cancer Hospital, Jinhua 321099, China
| | - Xiaoyu Wu
- Jinhua Guangfu Cancer Hospital, Jinhua 321099, China.
| | - Jie Shao
- Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Xu S, Liu X, Wu J, Wu J. NO x Sensor Constructed from Conductive Metal-Organic Framework and Graphene for Airway Inflammation Screening. ACS Sens 2023; 8:2348-2358. [PMID: 37312238 DOI: 10.1021/acssensors.3c00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection of nitric oxide in human exhaled breath (EB) has received wide attention due to its close relationship with respiratory tract inflammation. Herein, a ppb-level NOx chemiresistive sensor was prepared by assembling graphene oxide (GO) with a conductive π-d conjugated metal-organic framework Co3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) in the presence of poly(dimethyldiallylammonium chloride) (PDDA). The construction of a gas sensor chip was achieved by drop-casting the GO/PDDA/Co3(HITP)2 composite onto ITO-PET interdigital electrodes, followed by in situ reduction of GO to reduced graphene oxide (rGO) in hydrazine hydrate vapor. Compared with bare rGO, the nanocomposite shows significantly improved sensitivity and selectivity for NOx among various gas analytes owing to its folded and porous structure as well as its numerous active sites. The limit of detection (LOD) for NO and NO2 can reach as low as 11.2 and 6.8 ppb, respectively, and the response/recovery time to 200 ppb NO is 24/41 s. These results indicate that rGO/PDDA/Co3(HITP)2 can achieve a sensitive and fast response toward NOx at room temperature (RT). Additionally, good repeatability and long-term stability were observed. Furthermore, the sensor shows improved humidity tolerance owing to the presence of hydrophobic benzene rings in Co3(HITP)2. To demonstrate its ability in EB detection, EB samples collected from healthy individuals were spiked with a certain amount of NO to simulate the EB of respiratory inflammatory patients. The sensor can successfully distinguish healthy people from the simulated patients. Furthermore, in real clinical sample detection, the sensor can further differentiate acute respiratory inflammatory patients from the chronic ones.
Collapse
Affiliation(s)
- Shiyuan Xu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuemei Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Wyszyńska M, Nitsze-Wierzba M, Czelakowska A, Kasperski J, Żywiec J, Skucha-Nowak M. An Evidence-Based Review of Application Devices for Nitric Oxide Concentration Determination from Exhaled Air in the Diagnosis of Inflammation and Treatment Monitoring. Molecules 2022; 27:4279. [PMID: 35807523 PMCID: PMC9268246 DOI: 10.3390/molecules27134279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
The measurement of nitric oxide (NO) in exhaled air is used in diagnostics and monitoring the pathologies not only in the respiratory system but also in the oral cavity. It has shown a huge increase in its level in asthma and diseases of the oral cavity. It seems reasonable to undertake research on the impact of inflammation on the level of NO in exhaled air. The aim of the study is to make an evidence-based review of the application of NO levels in exhaled air in the diagnosis of inflammation and treatment monitoring on the basis of selected measuring devices. METHODS AND RESULTS This paper presents an example of the application of NO measurement in exhaled air in individual human systems. Selected measuring devices, their non-invasiveness, and their advantages are described. DISCUSSION The usefulness of this diagnostic method in pathologies of the oral cavity was noted. CONCLUSIONS Measuring the level of NO in exhaled air seems to be a useful diagnostic method.
Collapse
Affiliation(s)
- Magdalena Wyszyńska
- Department of Dental Materials, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland
| | - Monika Nitsze-Wierzba
- Department of Dental Prosthetics, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland; (M.N.-W.); (A.C.); (J.K.)
| | - Aleksandra Czelakowska
- Department of Dental Prosthetics, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland; (M.N.-W.); (A.C.); (J.K.)
| | - Jacek Kasperski
- Department of Dental Prosthetics, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland; (M.N.-W.); (A.C.); (J.K.)
| | - Joanna Żywiec
- Department of Clinical Pharmacology, Diabetology and Nephrology, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland;
| | - Małgorzata Skucha-Nowak
- Department of Dental Propedeutics, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Alving K, Anolik R, Crater G, LaForce CF, Rickard K. Validation of a New Portable Exhaled Nitric Oxide Analyzer, NIOX VERO®: Randomized Studies in Asthma. Pulm Ther 2017. [DOI: 10.1007/s41030-017-0032-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Maniscalco M, Vitale C, Vatrella A, Molino A, Bianco A, Mazzarella G. Fractional exhaled nitric oxide-measuring devices: technology update. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2016; 9:151-60. [PMID: 27382340 PMCID: PMC4922771 DOI: 10.2147/mder.s91201] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO.
Collapse
Affiliation(s)
- Mauro Maniscalco
- Unit of Respiratory Diseases, Hospital "S Maria della Pietà" of Casoria, Naples
| | - Carolina Vitale
- Unit of Respiratory Medicine, Department of Medicine and Surgery, University of Salerno, Salerno
| | - Alessandro Vatrella
- Unit of Respiratory Medicine, Department of Medicine and Surgery, University of Salerno, Salerno
| | - Antonio Molino
- Department of Respiratory Medicine, University Federico II
| | - Andrea Bianco
- Department of Cardiothoracic and Respiratory Sciences, Second, University of Naples, Naples, Italy
| | - Gennaro Mazzarella
- Department of Cardiothoracic and Respiratory Sciences, Second, University of Naples, Naples, Italy
| |
Collapse
|
7
|
Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry. Sci Rep 2016; 6:23095. [PMID: 26975333 PMCID: PMC4791560 DOI: 10.1038/srep23095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment.
Collapse
|
8
|
Peng L, Hua L, Li E, Wang W, Zhou Q, Wang X, Wang C, Li J, Li H. Dopant titrating ion mobility spectrometry for trace exhaled nitric oxide detection. J Breath Res 2015; 9:016003. [PMID: 25557839 DOI: 10.1088/1752-7155/9/1/016003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ion mobility spectrometry (IMS) is a promising non-invasive tool for the analysis of exhaled gas and exhaled nitric oxide (NO), a biomarker for diagnosis of respiratory diseases. However, the high moisture in exhaled gas always brings about extra overlapping ion peaks and results in poor identification ability. In this paper, p-benzoquinone (PBQ) was introduced into IMS to eliminate the interference of overlapping ion peaks and realize the selective identification of NO. The overlapping ions caused by moisture were titrated by PBQ and then converted to hydrated PBQ anions (C6H4[Formula: see text](H2O)n). The NO concentration could be determined by quantifying gas phase hydrated nitrite anions (N[Formula: see text](H2O)n), product ions of NO. Under optimized conditions, a limit of detection (LOD) of about 1.4 ppbv and a linear range of 10-200 ppbv were obtained for NO even in 100% relative humidity (RH) purified air. Furthermore, this established method was applied to measure hourly the exhaled NO of eight healthy volunteers, and real-time monitoring the exhaled NO of an esophageal carcinoma patient during radical surgery. These results revealed the potential of the current dopant titrating IMS method in the measurement of exhaled NO for medical disease diagnosis.
Collapse
Affiliation(s)
- Liying Peng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Watanabe K, Shinkai M, Shinoda M, Hara Y, Yamaguchi N, Rubin BK, Ishigatsubo Y, Kaneko T. Measurement of eNO with portable analyser might improve the management of persistent cough at primary care practice in Japan. CLINICAL RESPIRATORY JOURNAL 2014; 10:380-8. [PMID: 25307553 DOI: 10.1111/crj.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/23/2014] [Accepted: 09/29/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS There are some controversial reports that investigated the usefulness of exhaled nitric oxide (eNO) to predict the efficacy of inhaled corticosteroids (ICS) in chronic cough patients. Therefore, we retrospectively analysed the usefulness of eNO measurement with portable analyser to predict the requirement of ICS therapy in persistent cough (defined as lasting for 3 weeks or more) patients in Japan and investigated whether it might improve the management of persistent cough at primary care practice. METHODS We retrospectively reviewed the clinical records of adult patients who had been referred to our hospital for persistent cough from 1 June 2009 to 30 April 2011. RESULTS Forty-two patients had the requirement of ICS (group S) and 35 patients had no requirement of ICS (group N). Forty-three per cent of the patients who required ICS had not received ICS, and 29% of the patients who did not required ICS had received ICS. In the steroid-naive patients without current smoking, mean eNO level was significantly higher in group S [60.6 ± 14.1 parts per billion (ppb) vs 22.2 ± 2.3 ppb, P = 0.001] and the sensitivity and the specificity of eNO for predicting the requirement of ICS were 78.6% and 80.0%, respectively. The rate of the patients who received inappropriate treatment about ICS tended to be reduced from 41% to 21% if the eNO was used to predict the requirement of ICS with cut-off value of eNO 26.5 ppb (P = 0.118). CONCLUSION Measurement of eNO could be one of the management tools for persistent cough at primary care practice.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaharu Shinkai
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Masahiro Shinoda
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yu Hara
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Nobuhiro Yamaguchi
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Bruce K Rubin
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, USA
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
10
|
Ralph AP, Yeo TW, Salome CM, Waramori G, Pontororing GJ, Kenangalem E, Sandjaja, Tjitra E, Lumb R, Maguire GP, Price RN, Chatfield MD, Kelly PM, Anstey NM. Impaired pulmonary nitric oxide bioavailability in pulmonary tuberculosis: association with disease severity and delayed mycobacterial clearance with treatment. J Infect Dis 2013; 208:616-26. [PMID: 23737604 DOI: 10.1093/infdis/jit248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Nitric oxide (NO), a key macrophage antimycobacterial mediator that ameliorates immunopathology, is measurable in exhaled breath in individuals with pulmonary tuberculosis. We investigated relationships between fractional exhale NO (FENO) and initial pulmonary tuberculosis severity, change during treatment, and relationship with conversion of sputum culture to negative at 2 months. METHODS In Papua, we measured FENO in patients with pulmonary tuberculosis at baseline and serially over 6 months and once in healthy controls. Treatment outcomes were conversion of sputum culture results at 2 months and time to conversion of sputum microscopy results. RESULTS Among 200 patients with pulmonary tuberculosis and 88 controls, FENO was lower for patients with pulmonary tuberculosis at diagnosis (geometric mean FENO, 12.7 parts per billion [ppb]; 95% confidence interval [CI], 11.6-13.8) than for controls (geometric mean FENO, 16.6 ppb; 95% CI, 14.2-19.5; P = .002), fell further after treatment initiation (nadir at 1 week), and then recovered by 6 months (P = .03). Lower FENO was associated with more-severe tuberculosis disease, with FENO directly proportional to weight (P < .001) and forced vital-capacity (P = .001) and inversely proportional to radiological score (P = .03). People whose FENO increased or remained unchanged by 2 months were 2.7-fold more likely to achieve conversion of sputum culture than those whose FENO decreased (odds ratio, 2.72; 95% CI, 1.05-7.12; P = .04). CONCLUSIONS Among patients with pulmonary tuberculosis, impaired pulmonary NO bioavailability is associated with more-severe disease and delayed mycobacterial clearance. Measures to increase pulmonary NO warrant investigation as adjunctive tuberculosis treatments.
Collapse
Affiliation(s)
- Anna P Ralph
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory 0810, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kohl I, Beauchamp J, Cakar-Beck F, Herbig J, Dunkl J, Tietje O, Tiefenthaler M, Boesmueller C, Wisthaler A, Breitenlechner M, Langebner S, Zabernigg A, Reinstaller F, Winkler K, Gutmann R, Hansel A. First observation of a potential non-invasive breath gas biomarker for kidney function. J Breath Res 2013; 7:017110. [DOI: 10.1088/1752-7155/7/1/017110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Cristescu SM, Mandon J, Harren FJM, Meriläinen P, Högman M. Methods of NO detection in exhaled breath. J Breath Res 2013; 7:017104. [PMID: 23445766 DOI: 10.1088/1752-7155/7/1/017104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is still an unexplored potential for exhaled nitric oxide (NO) in many clinical applications. This study presents an overview of the currently available methods for monitoring NO in exhaled breath and the use of the modelling of NO production and transport in the lung in clinical practice. Three technologies are described, namely chemiluminescence, electrochemical sensing and laser-based detection with their advantages and limitations. Comparisons are made in terms of sensitivity, time response, size, costs and suitability for clinical purposes. The importance of the flow rate for NO sampling is discussed from the perspective of the recent recommendations for standardized procedures for online and offline NO measurement. The measurement of NO at one flow rate, such as 50 ml s(-1), can neither determine the alveolar site/peripheral contribution nor quantify the difference in NO diffusion from the airways walls. The use of NO modelling (linear or non-linear approach) can solve this problem and provide useful information about the source of NO. This is of great value in diagnostic procedures of respiratory diseases and in treatment with anti-inflammatory drugs.
Collapse
Affiliation(s)
- S M Cristescu
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Exhaled nitric oxide and pulmonary artery pressures during graded ascent to high altitude. Respir Physiol Neurobiol 2011; 177:213-7. [DOI: 10.1016/j.resp.2011.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/19/2022]
|