1
|
Goodlet KJ, McCreary EK, Nailor MD, Barnes D, Brokhof MM, Bova S, Clemens E, Kelly B, Lichvar A, Pluckrose DM, Summers BB, Szempruch KR, Tchen S. Therapeutic Myths in Solid Organ Transplantation Infectious Diseases. Open Forum Infect Dis 2024; 11:ofae342. [PMID: 38983710 PMCID: PMC11232700 DOI: 10.1093/ofid/ofae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Infection management in solid organ transplantation poses unique challenges, with a diverse array of potential pathogens and associated antimicrobial therapies. With limited high-quality randomized clinical trials to direct optimal care, therapeutic "myths" may propagate and contribute to suboptimal or excessive antimicrobial use. We discuss 6 therapeutic myths with particular relevance to solid organ transplantation and provide recommendations for infectious diseases clinicians involved in the care of this high-risk population.
Collapse
Affiliation(s)
- Kellie J Goodlet
- Department of Pharmacy Practice, Midwestern University, Glendale, Arizona, USA
| | - Erin K McCreary
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael D Nailor
- Department of Pharmacy Services, St Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Darina Barnes
- Department of Pharmacy, Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Marissa M Brokhof
- Department of Pharmacy, Rush University Medical Center, Chicago, Illinois, USA
| | - Sarah Bova
- Department of Pharmacy, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Evan Clemens
- Department of Pharmacy, University of Washington Medical Center, Seattle, Washington, USA
| | - Beth Kelly
- Department of Pharmacy, Indiana University Health, Indianapolis, Indiana, USA
| | - Alicia Lichvar
- Center for Transplantation, UC San Diego Health, San Diego, California, USA
| | - Dawn M Pluckrose
- Department of Pharmacy, Tufts Medical Center, Boston, Massachusetts, USA
| | - Bryant B Summers
- Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kristen R Szempruch
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Stephanie Tchen
- Department of Pharmacy, Froedtert Hospital, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Elhaj Mahmoud D, Hérivaux A, Morio F, Briard B, Vigneau C, Desoubeaux G, Bouchara JP, Gangneux JP, Nevez G, Le Gal S, Papon N. The epidemiology of invasive fungal infections in transplant recipients. Biomed J 2024; 47:100719. [PMID: 38580051 PMCID: PMC11220536 DOI: 10.1016/j.bj.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024] Open
Abstract
Transplant patients, including solid-organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients, are exposed to various types of complications, particularly rejection. To prevent these outcomes, transplant recipients commonly receive long-term immunosuppressive regimens that in turn make them more susceptible to a wide array of infectious diseases, notably those caused by opportunistic pathogens. Among these, invasive fungal infections (IFIs) remain a major cause of mortality and morbidity in both SOT and HSCT recipients. Despite the continuing improvement in early diagnostics and treatments of IFIs, the management of these infections in transplant patients is still complicated. Here, we provide an overview concerning the most recent trends in the epidemiology of IFIs in SOT and HSCT recipients by describing the prominent yeast and mold species involved, the timing of post-transplant IFIs and the risk factors associated with their occurrence in these particularly weak populations. We also give special emphasis into basic research advances in the field that recently suggested a role of the global and long-term prophylactic regimen in orchestrating various biological disturbances in the organism and conditioning the emergence of the most adapted fungal strains to the particular physiological profiles of transplant patients.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Anaïs Hérivaux
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de L'Immunité, UR1155, Nantes, France
| | - Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Cécile Vigneau
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Division of Nephrology, Rennes University Hospital, Rennes, France
| | - Guillaume Desoubeaux
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Jean-Philippe Bouchara
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Laboratory of Parasitology and Medical Mycology, European Confederation of Medical Mycology (ECMM) Excellence Center, Centre National de Référence Aspergilloses Chroniques, Rennes University Hospital, Rennes, France
| | - Gilles Nevez
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Solène Le Gal
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Nicolas Papon
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France.
| |
Collapse
|
3
|
Saadatzadeh T, Angarone M, Stosor V. Pneumocystis jirovecii in solid organ transplant recipients: updates in epidemiology, diagnosis, treatment, and prevention. Curr Opin Infect Dis 2024; 37:121-128. [PMID: 38230604 DOI: 10.1097/qco.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
PURPOSE OF REVIEW This review highlights the epidemiology of Pneumocystis jirovecii pneumonia in solid organ transplant recipients, advancements in the diagnostic landscape, and updates in treatment and prevention. RECENT FINDINGS The increasing use of immune-depleting agents in the context of solid organ transplantation has given rise to P. jirovecii pneumonia in this population. The use of prophylaxis has dramatically reduced risk of infection; however, late-onset infections occur after cessation of prophylaxis and in the setting of lymphopenia, advancing patient age, acute allograft rejection, and cytomegalovirus infection. Diagnosis requires respiratory specimens, with PCR detection of Pneumocystis replacing traditional staining methods. Quantitative PCR may be a useful adjunct to differentiate between infection and colonization. Metagenomic next-generation sequencing is gaining attention as a noninvasive diagnostic tool. Trimethoprim-sulfamethoxazole remains the drug of choice for treatment and prevention of Pneumocystis pneumonia. Novel antifungal agents are under investigation. SUMMARY P. jirovecii is a fungal opportunistic pathogen that remains a cause of significant morbidity and mortality in solid organ transplant recipients. Early detection and timely treatment remain the pillars of management.
Collapse
Affiliation(s)
| | | | - Valentina Stosor
- Divisions of Infectious Diseases
- Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Harizanov R, Tsvetkova N, Ivanova A, Enikova R, Videnova M, Rainova I, Kaneva E, Kaftandjiev I, Strashimirov D, Yancheva-Petrova N, Simeonovski I, Levterova V, Yanev N. Study on the Prevalence of Pneumocystis jirovecii as a Causative Agent of Lung Pathology in People with Different Immune Status. Biomedicines 2023; 11:1851. [PMID: 37509491 PMCID: PMC10376562 DOI: 10.3390/biomedicines11071851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Pneumocystis pneumonia (PCP) commonly affects immunocompromised individuals, whereas in immunocompetent persons, it occurs relatively rarely, and in most cases, the Pneumocystis infection is detected as an asymptomatic colonization. The present study aimed to establish the prevalence of Pneumocystis jirovecii infection in human hosts with different immune status (immunocompromised and immunocompetent), using molecular diagnostic methods, and to compare their diagnostic value with that of classical staining methods. METHODS We used the collected-to-this-moment data from a prospective study on the prevalence of pneumocystosis among the Bulgarian population. Clinical specimens (including throat secretions, induced sputum, tracheal aspirates, and bronchoalveolar lavage) collected from 220 patients suspected of PCP (153 immunocompetent and 67 immunocompromised patients) were examined with microscopic staining methods and real-time PCR for detection of P. jirovecii. Results: DNA of the pathogen was detected in 38 (17%) specimens (32 immunocompromised patients and 6 immunocompetent subjects). From all 220 clinical samples examined by staining methods, only five (2%) P. jirovecii cysts were detected by the Gomori stain. All patients with PCP were treated with trimethoprim-sulfamethoxazole, but in ten of them (HIV-positive patients), the disease had a fatal outcome. CONCLUSIONS This study is the first in Bulgaria including the main available laboratory methods for diagnosis of human pneumocystosis. Regarding the etiological diagnosis of PCP, in our study the sensitivity of real-time PCR was higher compared to the staining methods. The choice of a method for sample collection and examination has an important role in the efficiency of the laboratory diagnostics.
Collapse
Affiliation(s)
- Rumen Harizanov
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Nina Tsvetkova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Aleksandra Ivanova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Raina Enikova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Mihaela Videnova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Iskra Rainova
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Eleonora Kaneva
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Iskren Kaftandjiev
- Department of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Dimitar Strashimirov
- Department for AIDS, Specialized Hospital for Active Treatment of Infectious and Parasitic Diseases, Ivan Geshev Blvd. 17, 1431 Sofia, Bulgaria
| | - Nina Yancheva-Petrova
- Department for AIDS, Specialized Hospital for Active Treatment of Infectious and Parasitic Diseases, Ivan Geshev Blvd. 17, 1431 Sofia, Bulgaria
| | - Ivan Simeonovski
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Viktoria Levterova
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Nikolay Yanev
- Department of Bronchology, University Multi-Profile Hospital (UMBAL) for Active Treatment of Lung Diseases "Sveti Ivan Rilski" EAD, Ivan Geshev Blvd. 19, 1431 Sofia, Bulgaria
| |
Collapse
|
5
|
Hänsel L, Schumacher J, Denis B, Hamane S, Cornely OA, Koehler P. How to diagnose and treat a non-HIV patient with Pneumocystis jirovecii pneumonia (PCP)? Clin Microbiol Infect 2023:S1198-743X(23)00186-6. [PMID: 37086781 DOI: 10.1016/j.cmi.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Pneumocystis jirovecii Pneumonia (PCP) incidence is increasing in non-HIV infected patients. In contrast to PCP in patients infected with HIV, diagnosis is often delayed, and illness is associated with an increased mortality. OBJECTIVE To provide a comprehensive review of clinical presentation, risk factors, diagnostic strategies, and treatment options of PCP in non-HIV-infected patients. SOURCES Web-based literature review on PCP for trials, meta-analyses and systematic reviews using PubMed. Restriction to English language was applied. CONTENT Common underlying conditions in non-HIV-infected patients with PCP are haematological malignancies, autoimmune and inflammatory diseases, solid organ or haematopoietic stem cell transplant and prior exposure to corticosteroids. New risk groups include patients receiving monoclonal antibodies and immunomodulating therapies. Non-HIV-infected patients with PCP present with rapid onset and progression of pneumonia, increased duration of hospitalization and a significantly higher mortality rate than patients infected with HIV. PCP is diagnosed by a combination of clinical symptoms, radiological and mycological features. Immunofluorescence microscopy from bronchoalveolar lavage (BAL) or PCR testing CT imaging and evaluation of the clinical presentation are required. The established treatment regime consists of trimethoprim and sulfamethoxazole. IMPLICATIONS While the number of patients immunosuppressed for other causes than HIV is increasing, a simultaneous rise in PCP incidence is observed. In the group of non-HIV-infected patients, a rapid onset of symptoms, a more complex course, and a higher mortality rate are recorded. Therefore, time to diagnosis must be as short as possible to initiate effective therapy promptly. This review aims to raise awareness of PCP in an increasingly affected at-risk group and provide clinicians with a practical guide for efficient diagnosis and targeted therapy. Furthermore, it intends to display current inadequacies in research on the topic of PCP.
Collapse
Affiliation(s)
- Luise Hänsel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Jana Schumacher
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Blandine Denis
- Department of infectious diseases, Saint Louis and Lariboisière Hospitals, APHP, Paris, France, Excellence Centre for Medical Mycology (ECMM), Paris, France
| | - Samia Hamane
- Department of infectious diseases, Saint Louis and Lariboisière Hospitals, APHP, Paris, France, Excellence Centre for Medical Mycology (ECMM), Paris, France
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.
| |
Collapse
|
6
|
Zhong Y, Ji T, Qin D, Cheng D. Clinical characteristics and risk factors of in-hospital mortality in patients coinfected with Pneumocystis jirovecii and Aspergillus. J Mycol Med 2023; 33:101330. [PMID: 36265259 DOI: 10.1016/j.mycmed.2022.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To analyze clinical characteristics and risk factors for in-hospital mortality in patients coinfected with P. jirovecii and Aspergillus. METHODS This study included 53 patients with coinfection of P. jirovecii pneumonia (PJP) and invasive pulmonary aspergillosis (IPA) in our center from January 2011 to December 2021. All cases were divided into survivor (n=27) and non-survivor groups (n=26). Medical records, laboratory and radiology data were collected. Risk factors for in-hospital mortality were identified by multivariable analyses. RESULTS HIV-positive patients accounted for 3.8%. Fever (77.4%), dyspnea (69.8%) and wet cough (24.5%) were common symptoms. Ground-glass opacity (83.0%), consolidation (71.7%), septal thickening (66.0%), and nodules (54.7%) were the most common radiological signs. CD4+ T cell count and serum albumin (ALB) level were significantly lower in non-survival group than in the survival group. Conversely, serum lactate dehydrogenase (LDH) and procalcitonin (PCT) levels were higher in non-survival group than in survival group. Lactic acidosis [odds ratio (OR): 33.999,95% confidential interval (CI): 3.112-371.409; p=0.004], low CD4+ T cell count (<114 cell/µL) [OR: 19.343, 95% CI: 1.533-259.380; p=0.022] and high level of LDH (> 519 U/L) [OR: 11.422, 95% CI: 1.271-102.669; p=0.030] were independent risk factors for mortality. CONCLUSION PJP coinfected with IPA incurs high mortality with nonspecific clinical characteristics and is more likely to involve HIV-negative patients. Lactic acidosis, low CD4+ T cell count and high LDH level are independent risk factors for mortality, close monitoring of these parameters is necessary to help distinguish high-risk patients and make appropriate clinical decisions.
Collapse
Affiliation(s)
- Yuxia Zhong
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Sichuan 610041, China
| | - Ting Ji
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Sichuan 610041, China
| | - Dan Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Sichuan 610041, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Sichuan 610041, China.
| |
Collapse
|
7
|
Cheng YD, Huang CH, Gau SY, Chung NJ, Huang SW, Huang CY, Lee CY. Risk of Pneumocystis jirovecii Pneumonia among Solid Organ Transplant Recipients: A Population-Based Study. J Fungi (Basel) 2022; 9:23. [PMID: 36675844 PMCID: PMC9866281 DOI: 10.3390/jof9010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Few studies have comprehensively investigated the occurrence of Pneumocystis jirovecii pneumonia (PJP) among solid organ transplant (SOT) recipients. This study investigated the risk of PJP after organ transplantation. Each patient who underwent SOT was propensity-score-matched with four non-SOT individuals in terms of sex, age, insured salary, urbanization of residence, comorbidities, and year of enrollment. When considering the 3-year follow-up, the patients who had undergone SOT were at higher risk of PJP, with the adjusted odds ratio (aOR) being 17.18 (95% confidence interval (CI): 8.80-33.53). Furthermore, SOT recipients were also at higher PJP risk than the patients without SOT at 6 months, 1 year, and 2 years, with the aOR being 22.64 (95% CI: 7.53-68.11), 26.19 (95% CI: 9.89-69.37), and 23.06 (95% CI: 10.23-51.97), respectively. Patients comorbid with HIV infection, hematological malignancies, or vasculitis were at higher risk (aOR = 59.08, 95% CI = 20.30-171.92), (aOR = 11.94, 95% CI = 5.36-26.61), and (aOR = 21.72, 95% CI = 2.41-195.81), respectively. The recipients of SOT were at higher risk of PJP, and PJP can develop at any stage after transplantation. SOT recipients comorbid with HIV, hematologic malignancies, or vasculitis were at higher PJP risk.
Collapse
Affiliation(s)
- Yih-Dih Cheng
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Department of Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ching-Hua Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ning-Jen Chung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shiang-Wen Huang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Cheng-Yang Huang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
8
|
Fungal Infection and Prevention in Lung Transplant. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Tong T, Wang Z, Xu Y, Shen J. Immunization with Pneumocystis carinii A12 1-85 antigen activates immune function against P. carinii. BMC Immunol 2021; 22:40. [PMID: 34174820 PMCID: PMC8236001 DOI: 10.1186/s12865-021-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumocystis pneumonia (PcP), which is caused by Pneumocystis carinii, is a life-threatening infection that affects immunocompromised individuals. Unfortunately, chemoprophylaxis and dapsone are only effective for half of the patients with PcP, indicating that additional preventive methods are needed. We predicated the pneumocystis surface protein A12 sequence 1-85 by DNAStar software and BepiPred, and identified it as a potential vaccine candidate by bioresearch. METHODS We used recombinant A121-85 as antigen to immunized mice and detected serum titer of IgG, expression of inflammatory factors by EILSA, qRT-PCR and flow cytometry. RESULTS Our results showed that immunization with recombinant A121-85 increased the serum titer of IgG, promoted the secretion of T lymphocytes, increased the expression of inflammatory factors, and elevated lung inflammatory injury in mice. CONCLUSIONS Our findings suggest that A121-85 is a potential vaccine target for preventing Pneumocystis carinii. The evaluation of A121-85-elicited antibodies in the prevention of PcP in humans deserves further investigation.
Collapse
Affiliation(s)
- Tong Tong
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Zhongxin Wang
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, Fourth Affiliated Hospital, Anhui Medical University, 100 Huaihai Road, Hefei, Anhui People’s Republic of China
| |
Collapse
|
10
|
Kennedy CC, Pennington KM, Beam E, Razonable RR. Fungal Infection in Lung Transplantation. Semin Respir Crit Care Med 2021; 42:471-482. [PMID: 34030208 DOI: 10.1055/s-0041-1729173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Invasive fungal infections threaten lung transplant outcomes with high associated morbidity and mortality. Pharmacologic prophylaxis may be key to prevent posttransplant invasive fungal infections, but cost, adverse effects, and absorption issues are barriers to effective prophylaxis. Trends in fungal infection diagnostic strategies utilize molecular diagnostic methodologies to complement traditional histopathology and culture techniques. While lung transplant recipients are susceptible to a variety of fungal pathogens, Candida spp. and Aspergillus spp. infections remain the most common. With emerging resistant organisms and multiple novel antifungal agents in the research pipeline, it is likely that treatment strategies will continue to evolve.
Collapse
Affiliation(s)
- Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Elena Beam
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota.,Division of Infectious Disease, Mayo Clinic, Rochester, Minnesota
| | - Raymund R Razonable
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota.,Division of Infectious Disease, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|