1
|
Cocconcelli E, Bernardinello N, Cameli P, Di Liberti R, Alhamad EH, Gregori D, Pianigiani T, Dartora C, Messina R, Di Leo I, Castelli G, La Blasca T, Scichilone N, Bargagli E, Spagnolo P, Balestro E. Prevalence and Predictors of Response to Antifibrotics in Long-Term Survivors with Idiopathic Pulmonary Fibrosis. Lung 2025; 203:35. [PMID: 39998625 DOI: 10.1007/s00408-025-00789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE The natural history of IPF remains unpredictable despite antifibrotic treatment. In addition, some patients discontinue treatment due to the occurrence of adverse events. To date, no data exist on either the effect of long-term treatment or predictors of treatment response. In the present study, we aim to evaluate the functional trajectory of IPF patients treated with antifibrotics for at least three years and to establish predictors of treatment response. METHODS This multicenter study enrolled long-term survivors IPF patients provided they had stopped treatment for no longer than one month during at least three-year study period. Based on the absolute decline of FVC%predicted (pred.) observed during the 3-year treatment and normalized per year, patients were defined as progressors (≥ 5%) or non-progressors (< 5%). RESULTS We identify 172 IPF patients who completed three years of antifibrotic treatment with no interruption. The 27% of these IPF patients progressed despite complete adherence to treatment. Progressors were more likely to be non-smokers compared to non-progressors, with higher occurrence of diarrhea and with a more preserved lung function at diagnosis. FVC %pred. and liters at diagnosis, a greater FVC decline in the 1-st year of follow up, being non-smokers, and complaining of diarrhea over treatment are independent predictors of progression. CONCLUSION Almost one third of IPF patients adherent to three years of antifibrotics experience progression. A functional decline at first year of treatment despite preserved lung function at diagnosis, non-smoking status, and occurrence of diarrhea over treatment are independent predictors of disease progression.
Collapse
Affiliation(s)
- Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Rosangela Di Liberti
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Esam H Alhamad
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Tommaso Pianigiani
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Cristina Dartora
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Riccardo Messina
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Irene Di Leo
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Tiziana La Blasca
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Medicine, Department PROMISE, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova and Padova City Hospital, 35128, Padua, Italy.
| |
Collapse
|
2
|
Hong SY, Lu YT, Chen SY, Hsu CF, Lu YC, Wang CY, Huang KL. Targeting pathogenic macrophages by the application of SHP-1 agonists reduces inflammation and alleviates pulmonary fibrosis. Cell Death Dis 2023; 14:352. [PMID: 37291088 PMCID: PMC10249559 DOI: 10.1038/s41419-023-05876-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic disorder with no cure that is characterized by deterioration of lung function. Current FDA-approved drugs for IPF delay the decline in lung function, but neither reverse fibrosis nor significantly improve overall survival. SHP-1 deficiency results in hyperactive alveolar macrophages accumulating in the lung, which contribute to the induction of pulmonary fibrosis. Herein, we investigated whether employing a SHP-1 agonist ameliorates pulmonary fibrosis in a bleomycin-induced pulmonary fibrosis murine model. Histological examination and micro-computed tomography images showed that SHP-1 agonist treatment alleviates bleomycin-induced pulmonary fibrosis. Reduced alveolar hemorrhage, lung inflammation, and collagen deposition, as well as enhanced alveolar space, lung capacity, and improved overall survival were observed in mice administered the SHP-1 agonist. The percentage of macrophages collected from bronchoalveolar lavage fluid and circulating monocytes in bleomycin-instilled mice were also significantly reduced by SHP-1 agonist treatment, suggesting that the SHP-1 agonist may alleviate pulmonary fibrosis by targeting macrophages and reshaping the immunofibrotic niche. In human monocyte-derived macrophages, SHP-1 agonist treatment downregulated CSF1R expression and inactivated STAT3/NFκB signaling, culminating in inhibited macrophage survival and perturbed macrophage polarization. The expression of pro-fibrotic markers (e.g., MRC1, CD200R1, and FN1) by IL4/IL13-induced M2 macrophages that rely on CSF1R signaling for their fate-determination was restricted by SHP-1 agonist treatment. While M2-derived medium promoted the expression of fibroblast-to-myofibroblast transition markers (e.g., ACTA2 and COL3A1), the application of SHP-1 agonist reversed the transition in a dose-dependent manner. Our report indicates that pharmacological activation of SHP-1 ameliorates pulmonary fibrosis via suppression of CSF1R signaling in macrophages, reduction of pathogenic macrophages, and the inhibition of fibroblast-to-myofibroblast transition. Our study thus identifies SHP-1 as a druggable target for the treatment of IPF, and suggests that the SHP-1 agonist may be developed as an anti-pulmonary fibrosis medication that both suppresses inflammation and restrains fibroblast-to-myofibroblast transition.
Collapse
Affiliation(s)
- Shiao-Ya Hong
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Ya-Ting Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiung-Fang Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Yi-Chun Lu
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 23148, Taiwan.
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
3
|
Zhang X, Ren Y, Xie B, Ye Q, Ban C, Zhang S, Zhu M, Liu Y, Wang S, Geng J, He X, Jiang D, He J, Shu S, Luo S, Wang X, Song D, Fan M, Sun H, Dai H. Blood monocyte counts as a prognostic biomarker and predictor in Chinese patients with idiopathic pulmonary fibrosis. Front Med (Lausanne) 2022; 9:955125. [PMID: 36425108 PMCID: PMC9679289 DOI: 10.3389/fmed.2022.955125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVES We sought to evaluate the prognostic value of blood routine parameters and biochemical parameters, especially inflammation-related biomarkers, and establish an inflammation-related prognostic model in Chinese patients with idiopathic pulmonary fibrosis (IPF). MATERIAL/METHODS Patients diagnosed as IPF at Beijing Chaoyang Hospital and aged 40 years and older were consecutively enrolled from June 2000 to March 2015, and finally, a total of 377 patients were enrolled in the derivation cohort. The follow-up ended in December 2016. We used Cox proportional hazard model to calculate the hazard ratio (HR) and establish the prognostic model. The discrimination and calibration of the prognostic model were evaluated in an independent validation cohort enrolled from China-Japan Friendship Hospital between January 2015 and December 2019. RESULTS Multivariate analysis revealed that patients with elevated monocyte-to-red blood cell count ratio (MRR) and monocyte counts showed increased risk of mortality. The clinical-physiological-biomarker (CPB) index and CPB stage we established in this study were a significant predictor, and the C-index for CPB index and CPB stage in the validation cohort was 0.635 (95% CI: 0.558-0.712) and 0.619 (95% CI: 0.544-0.694), respectively. Patients in CPB stage III had the poorest survival. CONCLUSION We developed and validated a new inflammation-related prognostic model (CPB index and CPB stage) which was integration of age, gender, FVC (%, predicted), DLCO (%, predicted), Charlson Comorbidity Index, and blood monocyte counts. This prediction model exhibited strong ability in predicting mortality in Chinese patients with IPF.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yanhong Ren
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Qiao Ye
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chenjun Ban
- Department of Respiration, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shu Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Min Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiyao Wang
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xuan He
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Dingyuan Jiang
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jiarui He
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Shi Shu
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Sa Luo
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xin Wang
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Dingyun Song
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Mingming Fan
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- The Second Hospital of Jilin University, Changchun, China
| | - Haishuang Sun
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- The First Hospital of Jilin University, Changchun, China
| | - Huaping Dai
- National Center for Respiratory Medicine, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|