1
|
Fu Q, Liu Y, Peng C, Muluh TA, Anayyat U, Liang L. Recent Advancement in Inhaled Nano-drug Delivery for Pulmonary, Nasal, and Nose-to-brain Diseases. Curr Drug Deliv 2025; 22:3-14. [PMID: 38275044 DOI: 10.2174/0115672018268047231207105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Pulmonary, nasal, and nose-to-brain diseases involve clinical approaches, such as bronchodilators, inhaled steroids, oxygen therapy, antibiotics, antihistamines, nasal steroids, decongestants, intranasal drug delivery, neurostimulation, and surgery to treat patients. However, systemic medicines have serious adverse effects, necessitating the development of inhaled formulations that allow precise drug delivery to the airways with minimum systemic drug exposure. Particle size, surface charge, biocompatibility, drug capacity, and mucoadhesive are unique chemical and physical features that must be considered for pulmonary and nasal delivery routes due to anatomical and permeability considerations. The traditional management of numerous chronic diseases has a variety of drawbacks. As a result, targeted medicine delivery systems that employ nanotechnology enhancer drug efficiency and optimize the overall outcome are created. The pulmonary route is one of the most essential targeted drug delivery systems because it allows the administering of drugs locally and systemically to the lungs, nasal cavity, and brain. Furthermore, the lungs' beneficial characteristics, such as their ability to inhibit first-pass metabolism and their thin epithelial layer, help treat several health complications. The potential to serve as noninvasive self-administration delivery sites of the lung and nasal routes is discussed in this script. New methods for treating respiratory and some systemic diseases with inhalation have been explored and highlight particular attention to using specialized nanocarriers for delivering various drugs via the nasal and pulmonary pathways. The design and development of inhaled nanomedicine for pulmonary, nasal, and respiratory medicine applications is a potential approach for clinical translation.
Collapse
Affiliation(s)
- Qiuxia Fu
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Yangjie Liu
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Cao Peng
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Umer Anayyat
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liu Liang
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan, China PRC
| |
Collapse
|
2
|
Chraibi S, Rosière R, De Prez E, Antoine MH, Remmelink M, Langer I, Nortier J, Amighi K, Wauthoz N. Pulmonary and renal tolerance of cisplatin-based regimens combining intravenous and endotracheal routes for lung cancer treatment in mice. Int J Pharm 2021; 599:120425. [PMID: 33647417 DOI: 10.1016/j.ijpharm.2021.120425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022]
Abstract
Despite recent advances, platinum-based chemotherapy (partially composed of cisplatin, CIS) remains the backbone of non-small-cell lung cancer treatment. As CIS presents a cumulative and dose-limiting nephrotoxicity, it is currently administered with an interruption phase of 3-4 weeks between treatment cycles. During these periods, the patient recovers from the treatment side effects but so does the tumour. Our strategy is to increase the treatment frequency by delivering a cisplatin controlled-release dry powder for inhalation (CIS-DPI) formulation during these off-cycles to expose the tumour environment for longer to CIS, increasing its effectiveness. This is promising as long as the pulmonary and renal toxicities remain acceptable. The aim of the present investigation was to evaluate the pulmonary and renal tolerance of CIS-DPI (three times per cycle) and CIS using the intravenous (IV) route (CIS-IV) (one time per cycle) as monotherapies and to optimize their combination in terms of dose and schedule. At the maximum tolerated dose (MTD), combining CIS-DPI and CIS-IV impaired the pulmonary and the renal tolerance. Therefore, pulmonary tolerance was improved when the CIS-IV dose was decreased by 25% (to 1.5 mg/kg) while maintaining the MTD for CIS-DPI. In addition to this dose adjustment, a delay of 24 h between CIS-DPI and CIS-IV administrations limited the acute kidney injury.
Collapse
Affiliation(s)
- S Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - R Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium; InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium
| | - E De Prez
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - M H Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - M Remmelink
- Department of Pathology, ULB, Hôpital Erasme, Brussels, Belgium
| | - I Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), ULB, Brussels, Belgium
| | - J Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - K Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - N Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Wauthoz N, Rosière R, Amighi K. Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects. Expert Opin Drug Deliv 2020; 18:333-354. [PMID: 33050733 DOI: 10.1080/17425247.2021.1829590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Since 1968, inhaled chemotherapy has been evaluated and has shown promising results up to phase II but has not yet reached the market. This is due to technological and clinical challenges that require to be overcome with the aim of optimizing the efficacy and the tolerance of drug to re-open new developments in this field. Moreover, recent changes in the therapeutic standard of care for treating the patient with lung cancer also open new opportunities to combine inhaled chemotherapy with standard treatments. AREAS COVERED Clinical and technological concerns are highlighted from the reported clinical trials made with inhaled cytotoxic chemotherapies. This work then focuses on new pharmaceutical developments using dry powder inhalers as inhalation devices and on formulation strategies based on controlled drug release and with sustained lung retention or based on nanomedicine. Finally, new clinical strategies are described in regard to the impact of the immunotherapy on the patient's standard of care. EXPERT OPINION The choice of the drug, inhalation device, and formulation strategy as well as the position of inhaled chemotherapy in the patient's clinical care are crucial factors in optimizing local tolerance and efficacy as well as in its scalability and applicability in clinical practice.
Collapse
Affiliation(s)
- Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| | - Rémi Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|
5
|
Rosière R, Berghmans T, De Vuyst P, Amighi K, Wauthoz N. The Position of Inhaled Chemotherapy in the Care of Patients with Lung Tumors: Clinical Feasibility and Indications According to Recent Pharmaceutical Progresses. Cancers (Basel) 2019; 11:cancers11030329. [PMID: 30866545 PMCID: PMC6468657 DOI: 10.3390/cancers11030329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Despite new treatment modalities, including targeted therapies and checkpoint inhibitors, cytotoxic chemotherapy remains central in the care of patients with lung tumors. Use of the pulmonary route to deliver chemotherapy has been proved to be feasible and safe in phase I, Ib/IIa and II trials for lung tumors, with the administration of drug doses to the lungs without prior distribution in the organism. The severe systemic toxicities commonly observed with conventional systemic chemotherapy are consequently reduced. However, development has failed in phase II at best. This review first focuses on the causes of failure of inhaled chemotherapy. It then presents new promising technologies able to take up the current challenges. These technologies include the use of a dry powder inhaler or a smart nebulizer with advanced drug formulations such as controlled-release formulations and nanomedicine. Finally, the potential position of inhaled chemotherapy in patient care is discussed and some indications are proposed based on the literature.
Collapse
Affiliation(s)
- Rémi Rosière
- Unité de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Thierry Berghmans
- Service des Soins Intensifs et Urgences Oncologiques et Oncologie Thoracique, Institut Jules Bordet, Université libre de Bruxelles (ULB), Brussels 1000, Belgium.
| | - Paul De Vuyst
- Service of Pneumologie, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.
| | - Karim Amighi
- Unité de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Nathalie Wauthoz
- Unité de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
| |
Collapse
|