1
|
Franzese C, Louie AV, Kotecha RR, Zhang Z, Guckenberger M, Kim MS, Tree AC, Slotman BJ, Sahgal A, Scorsetti M. Stereotactic Body Radiotherapy for liver metastases: Systematic review and meta-analysis with International Stereotactic Radiosurgery Society (ISRS) Practice Guidelines. Pract Radiat Oncol 2024:S1879-8500(24)00272-8. [PMID: 39419281 DOI: 10.1016/j.prro.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Liver metastases are a significant clinical challenge in cancer management, often representing a stage of disease where curative treatment is still possible. Stereotactic Body Radiation Therapy (SBRT) has emerged as a promising modality for treating these metastases, offering a non-invasive approach with potential for high efficacy. This systematic review and meta-analysis provides a comprehensive analysis of the efficacy and safety of SBRT in treating liver metastases, and practice recommendations are provided. METHODS AND MATERIAL we performed a thorough literature review, adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, and included 33 studies with a total of 3101 patients and 4437 liver metastases. RESULTS The review revealed pooled local control (LC) rates at 1, 2, and 3 years of 85%, 75%, and 68% respectively, while overall survival (OS) rates were 79%, 54%, and 37%. Grade 3 and 4 side effects occurred in only 3% of patients. The review of the studies highlighted the importance of factors like primary tumor histology, lesion characteristics, and radiation dose in predicting treatment outcomes. CONCLUSIONS this review supports the growing body of evidence that SBRT is an efficacious and safe treatment option for liver metastases. It underscores the need for careful patient selection and personalized treatment planning to optimize outcomes.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Department of Radiotherapy and Radiosurgery, Milan, Italy.
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | - Rupesh R Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Herbert Wertheim College of Medicine, Florida International University, Miami, USA
| | - Zhenwei Zhang
- Technology Digital- Artificial Intelligence and Machine Learning, Baptist Health South Florid, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Mi-Sook Kim
- Department of radiation oncology, Korea Institute of Radiological and Medical Sciences, Korea
| | - Alison C Tree
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, location VUMC, Amsterdam, Netherlands
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Science Centre, university of Toronto, Ontario, Canada
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Department of Radiotherapy and Radiosurgery, Milan, Italy
| |
Collapse
|
2
|
Hernando-Requejo O, Chen X, López M, Sánchez E, García J, García P, Alonso R, Montero A, Ciervide R, Álvarez B, Zucca D, García Aranda M, Valero J, Fernández Letón P, Rubio C. Real-world effectiveness and safety of stereotactic body radiotherapy for liver metastases with different respiratory motion management techniques. Strahlenther Onkol 2023; 199:1000-1010. [PMID: 37728734 DOI: 10.1007/s00066-023-02147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/13/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) has been firmly established as a treatment choice for patients with oligometastases, as it has demonstrated both safety and efficacy by consistently achieving high rates of local control. Moreover, it offers potential survival benefits for carefully selected patients in real-world clinical settings. METHODS Between January 2008 and May 2020, a total of 149 patients (with 414 liver metastases) received treatment. The Active Breathing Coordinator device was used for 68 patients, while respiratory gating was used for 65 and abdominal compression was used for 16 patients. The most common histological finding was colorectal adenocarcinoma, with 37.6% of patients having three or more metastases, and 18% having two metastases. The prescribed dose ranged from 36 to 60 Gy, delivered in 3-5 fractions. RESULTS Local control rates at 2 and 3 years were 76.1% and 61.2%, respectively, with no instances of local recurrence after 3 years. Factors negatively impacting local control included colorectal histology, lower prescribed dose, and the occurrence of new liver metastases. The median overall survival from SBRT was 32 months, with the presence of metastases outside the liver and the development of new liver metastases after SBRT affecting survival. The median disease-free survival was 10 months. No substantial differences in both local control and survival were observed between the respiratory motion control techniques employed. Treatment tolerance was excellent, with only one patient experiencing acute grade IV thrombocytopenia and two patients suffering from ≥ grade II chronic toxicity. CONCLUSION For radical management of single or multiple liver metastases, SBRT is an effective and well-tolerated treatment option. Regardless of the technology employed, experienced physicians can achieve similarly positive outcomes. However, additional studies are required to elucidate prognostic factors that can facilitate improved patient selection.
Collapse
Affiliation(s)
- O Hernando-Requejo
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain.
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain.
| | - X Chen
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - M López
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - E Sánchez
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - J García
- Radiation Physics Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - P García
- Radiation Physics Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - R Alonso
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - A Montero
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - R Ciervide
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - B Álvarez
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - D Zucca
- Radiation Physics Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - M García Aranda
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - J Valero
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - P Fernández Letón
- Radiation Physics Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - C Rubio
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| |
Collapse
|
3
|
de la Pinta C, Sevillano D, Colmenares R, Barrio S, Olavarria A, Palomera A, Romera R, Cobos J, Muriel A, Fernández E, Perna LC, Albillos A, Sancho S. Are liver contour and bone fusion comparable to fiducials for IGRT in liver SBRT? Tech Innov Patient Support Radiat Oncol 2023; 27:100215. [PMID: 37744524 PMCID: PMC10511841 DOI: 10.1016/j.tipsro.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Liver stereotactic body radiotherapy (SBRT) is increasingly being used to treat tumours. The purpose of this study was to compare the differences in patient positioning when using implanted fiducials as surrogates compared to alternative methods based on liver contour or bone registration. Material and methods Eighteen patients treated with SBRT who underwent a fiducial placement procedure were included. Fiducial guidance was our gold standard to guide treatment in this study. After recording the displacements, when fusing the planning CT and CBCT performed in the treatment unit using fiducials, liver contour and bone reference, the differences between fiducials and liver contour and bone reference were calculated. Data from 88 CBCT were analyzed. The correlation between the displacements found with fiducials and those performed based on the liver contour and the nearest bone structure as references was determined. The mean, median, variance, range and standard deviation of the displacements with each of the fusion methods were obtained. μ, Ʃ, and σ values and margins were obtained. Results Lateral displacements of less than 3 mm with respect to the gold standard in 92% vs. 62.5% of cases using liver contour and bone references, respectively, with 93.2% vs. 65.9% in the AP axis and SI movement in 69.3% vs. 51.1%. The errors μ, σ and Ʃ of the fusions with hepatic contour and bone reference in SI were 0.26 mm, 4 mm and 3 mm, and 0.8 mm, 5 mm and 3 mm respectively. Conclusion Our study showed that displacements were smaller with the use of hepatic contour compared to bone reference and comparable to those obtained with the use of fiducials in the lateral, AP and SI motion axes. This would justify that hepatic contouring can be a guide in the treatment of patients in the absence of fiducials.
Collapse
Affiliation(s)
- C. de la Pinta
- Radiation Oncology Department. IRYCIS. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - D. Sevillano
- Medical Physics Department. Ramón y Cajal Hospital. IRYCIS, Crta Colmenar Viejo Km 9,100 28034, Madrid, Spain
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | - R. Colmenares
- Medical Physics Department. Ramón y Cajal Hospital. IRYCIS, Crta Colmenar Viejo Km 9,100 28034, Madrid, Spain
| | - S. Barrio
- Radiation Therapist. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - A. Olavarria
- Radiology Department. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - A. Palomera
- Radiology Department. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - R. Romera
- Radiology Department. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - J. Cobos
- Radiology Department. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - A. Muriel
- Clinical Biostatistics Unit, Ramón y Cajal University Hospital, IRYCIS, CIBERESP. Universidad de Alcalá, Madrid, Spain
| | - E. Fernández
- Radiation Oncology Department. IRYCIS. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - LC. Perna
- Pathology Department. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| | - A. Albillos
- Dept of Gastroenterology. Hospital Universitario Ramón y Cajal. Universidad de Alcalá. IRYCIS. CIBEREHD., Madrid, Spain
| | - S. Sancho
- Radiation Oncology Department. IRYCIS. Ramón y Cajal Hospital. Crta Colmenar Viejo Km 9,100. 28034, Madrid, Spain
| |
Collapse
|
4
|
Menichelli C, Casamassima F, Aristei C, Ingrosso G, Borghesi S, Arcidiacono F, Lancellotta V, Franzese C, Arcangeli S. Stereotactic radiotherapy for liver oligometastases. Rep Pract Oncol Radiother 2022; 27:32-39. [PMID: 35402041 PMCID: PMC8989451 DOI: 10.5603/rpor.a2021.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022] Open
Abstract
The liver is the first metastatic site in 15–25% of colorectal cancer patients and one of the first metastatic sites for lung and breast cancer patients. A computed tomography (CT ) scan with contrast medium is a standard procedure for assessing liver lesions but magnetic resonance imaging (MRI) characterizes small lesions better thanks to its high soft-tissue contrast. Positron emission tomography with computed tomography (PET-CT ) plays a complementary role in the diagnosis of liver metastases. Triphasic (arterial, venous and time-delayed) acquisition of contrast-medium CT images is the first step in treatment planning. Since the liver exhibits a relatively wide mobility due to respiratory movements and bowel filling, appropriate techniques are needed for target identification and motion management. Contouring requires precise recognition of target lesion edges. Information from contrast MRI and/or PET-CT is crucial as they best visualize metastatic disease in the parenchyma. Even though different fractionation schedules were reported, doses and fractionation schedules for liver stereotactic radiotherapy (SRT ) have not yet been established. The best local control rates were obtained with BED10 values over 100 Gy. Local control rates from most retrospective studies, which were limited by short follow-ups and included different primary tumors with intrinsic heterogeneity, ranged from 60% to 90% at 1 and 2 years. The most common SRT-related toxicities are increases in liver enzymes, hyperbilirubinemia and hypoalbuminemia. Overall, late toxicity is mild even in long-term follow-ups.
Collapse
Affiliation(s)
| | | | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | | | - Valentina Lancellotta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Roma, Italy
| | - Ciro Franzese
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, Milan, Italy
| | - Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan Bicocca, Milan, Italy
| |
Collapse
|
5
|
Gensanne D, Hadj Henni A, Lauzin Y, Clarisse P, Thureau S. [Inter- and intrafraction imaging during stereotactic body radiation therapy: Which solutions for which tumours?]. Cancer Radiother 2019; 23:891-895. [PMID: 31615729 DOI: 10.1016/j.canrad.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022]
Abstract
Due to high dose gradients, stereotactic body radiation therapy requires high precision in the location of the tumour. Uncertainties in the positioning can introduce serious damage on organs at risk and consequently can reduce tumour local control. A better tumour location can be achieved by controlling its position with an efficient inter and intrafraction imaging procedure. The various imaging techniques available on treatment systems are presented and performances are discussed. Finally, propositions are given in terms of imaging system according to the location treated by stereotactic body radiation therapy.
Collapse
Affiliation(s)
- D Gensanne
- Centre Henri-Becquerel, département de radiothérapie et de physique médicale, rue d'Amiens, CS 11516, 76038 Rouen cedex 1, France.
| | - A Hadj Henni
- Centre Henri-Becquerel, département de radiothérapie et de physique médicale, rue d'Amiens, CS 11516, 76038 Rouen cedex 1, France
| | - Y Lauzin
- Centre Henri-Becquerel, département de radiothérapie et de physique médicale, rue d'Amiens, CS 11516, 76038 Rouen cedex 1, France
| | - P Clarisse
- Centre Henri-Becquerel, département de radiothérapie et de physique médicale, rue d'Amiens, CS 11516, 76038 Rouen cedex 1, France
| | - S Thureau
- Centre Henri-Becquerel, département de radiothérapie et de physique médicale, rue d'Amiens, CS 11516, 76038 Rouen cedex 1, France; Quantif-Litis EA 4108, université de Rouen, 76000 Rouen, France
| |
Collapse
|
6
|
[Liver stereotactic body radiotherapy: Clinical features and technical consequences, results. Which treatment machine in which situation?]. Cancer Radiother 2019; 23:636-650. [PMID: 31444078 DOI: 10.1016/j.canrad.2019.07.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
Abstract
Liver stereotactic body radiotherapy is a developing technique for the treatment of primary tumours and metastases. Its implementation is complex because of the particularities of the treated organ and the comorbidities of the patients. However, this technique is a treatment opportunity for patients otherwise in therapeutic impasse. The scientific evidence of liver stereotactic body radiotherapy has been considered by the French health authority as insufficient for its widespread use outside specialized and experienced centers, despite a growing and important number of retrospective and prospective studies, but few comparative data. This article focuses on the specific features of stereotactic body radiotherapy for liver treatments and the results of published studies of liver stereotactic body radiotherapy performed with classic linear accelerators and dedicated radiosurgery units.
Collapse
|
7
|
Vera R, González-Flores E, Rubio C, Urbano J, Valero Camps M, Ciampi-Dopazo JJ, Orcajo Rincón J, Morillo Macías V, Gomez Braco MA, Suarez-Artacho G. Multidisciplinary management of liver metastases in patients with colorectal cancer: a consensus of SEOM, AEC, SEOR, SERVEI, and SEMNIM. Clin Transl Oncol 2019; 22:647-662. [PMID: 31359336 DOI: 10.1007/s12094-019-02182-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) has the second-highest tumor incidence and is a leading cause of death by cancer. Nearly 20% of patients with CRC will have metastases at the time of diagnosis, and more than 50% of patients with CRC develop metastatic disease during the course of their disease. A group of experts from the Spanish Society of Medical Oncology, the Spanish Association of Surgeons, the Spanish Society of Radiation Oncology, the Spanish Society of Vascular and Interventional Radiology, and the Spanish Society of Nuclear Medicine and Molecular Imaging met to discuss and provide a multidisciplinary consensus on the management of liver metastases in patients with CRC. The group defined the different scenarios in which the disease can present: fit or unfit patients with resectable liver metastases, patients with potential resectable liver metastases, and patients with unresectable liver metastases. Within each scenario, the different strategies and therapeutic approaches are discussed.
Collapse
Affiliation(s)
- R Vera
- Medical Oncology, Complejo Hospitalario de Navarra, Calle Irunlarrea, 3, 31008, Pamplona, Navarra, Spain.
| | | | - C Rubio
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - J Urbano
- Vascular and Interventional Radiology, Vithas Hospitals Group, Madrid, Spain
| | - M Valero Camps
- Nuclear Medicine, Clínica Rotger (Quiron Salud), Palma de Mallorca, Spain
| | - J J Ciampi-Dopazo
- Interventional Radiology Unit, Complejo Hospitalario de Toledo, Toledo, Spain
| | - J Orcajo Rincón
- Nuclear Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - V Morillo Macías
- Radiation Oncology, Hospital Provincial de Castellón, Castellón, Spain
| | - M A Gomez Braco
- Hepatobiliary and Liver Transplantation Unit, University Hospital Virgen del Rocío, Sevilla, Spain
| | - G Suarez-Artacho
- Hepatobiliary and Liver Transplantation Unit, University Hospital Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
8
|
Local control rates in stereotactic body radiotherapy (SBRT) of lung metastases associated with the biologically effective dose. Rep Pract Oncol Radiother 2019; 24:142-150. [PMID: 30723385 DOI: 10.1016/j.rpor.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Aim To evaluate dose differences in lung metastases treated with stereotactic body radiotherapy (SBRT), and the correlation with local control, regarding the dose algorithm, target volume and tissue density. Background Several studies showed excellent local control rates in SBRT for lung metastases, with different fractionation schemes depending on the tumour location or size. These results depend on the dose distributions received by the lesions in terms of the tissue heterogeneity corrections performed by the dose algorithms. Materials and methods Forty-seven lung metastases treated with SBRT, using intrafraction control and respiratory gating with internal fiducial markers as surrogates (ExacTrac, BrainLAB AG), were calculated using Pencil Beam (PB) and Monte Carlo (MC) (iPlan, BrainLAB AG).Dose differences between both algorithms were obtained for the dose received by 99% (D 99%) and 50% (D 50%) of the planning treatment volume (PTV). The biologically effective dose delivered to 99% (BED99%) and 50% (BED50%) of the PTV were estimated from the MC results. Local control was evaluated after 24 months of median follow-up (range: 3-52 months). Results The greatest variations (40.0% in ΔD 99% and 38.4% in ΔD 50%) were found for the lower volume and density cases. The BED99% and BED50% were strongly correlated with observed local control rates: 100% and 61.5% for BED99% > 85 Gy and <85 Gy (p < 0.0001), respectively, and 100% and 58.3% for BED50% > 100 Gy and <100 Gy (p < 0.0001), respectively. Conclusions Lung metastases treated with SBRT, with delivered BED99% > 85 Gy and BED50% > 100 Gy, present better local control rates than those treated with lower BED values (p = 0.001).
Collapse
|
9
|
Macià M, Llacer-Moscardo C. Editorial. Rep Pract Oncol Radiother 2017; 22:83-85. [DOI: 10.1016/j.rpor.2016.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|