1
|
Bahreyni Toosi MT, Azimian H, Salek R, Tabatabaei SA, Forghani MN, Dolat E. Evaluation of Relationship between Intrinsic Radiosensitivity (Survival Fraction at 2 Gy) and Gamma-H2AX Test and Apoptosis of Lymphocytes in Breast Cancer Patients. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:17. [PMID: 39100740 PMCID: PMC11296569 DOI: 10.4103/jmss.jmss_40_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
Background Radiotherapy is one of the routine treatment strategies for breast cancer (BC) patients. Different responses of the patient to radiation due to different intrinsic radiosensitivity (RS) were induced to the researcher try to introduce a standard assay for the prediction of RS. Clonogenic assay is recognized as a gold standard method in this subject but because of some of its disadvantages, it is needed for alternative assays. In this study, two assays were evaluated for this reason in ten BC patients with different RSs. Methods The peripheral blood of 10 volunteers with BC was obtained, and the peripheral blood mononuclear cells were extracted. After exposed with 2 Gy, survival fraction at 2 Gy (SF2) was calculated by clonogenic assay. γ-H2AX assay was performed for all patients, and apoptosis assay was evaluated for three represented categorized patients. Results RS of patients showed SF2 and categorized in three groups (high, medium, and low RS). Double-strand breaks (DSBs) were decreased in high radiosensitive patients, but the residual DSBs were clearly higher than other two groups. It is shown that the repair system in these patients is lower active than others. Apoptosis frequency in patient 4 is highly active which could induce the enhancement of her RS. Conclusion γ-H2AX and apoptosis assays could predict the intrinsic RS, but evaluation of them separately is not sufficient for this aim. It is necessary to consider all the parameters together and consideration of the combination of assays could fit a better prediction of intrinsic RS.
Collapse
Affiliation(s)
| | - Hossein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roham Salek
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Zhao W, Mao L, He C, Ding D, Hu N, Song X, Long D. Effects of low dose radiation on behavior rhythm of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114779. [PMID: 36924557 DOI: 10.1016/j.ecoenv.2023.114779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Biological rhythm refers to the internal regulation of various life activities of an organism, which are determined by the specific time structure sequences of each individual. Behavior rhythm is the most intuitive embodiment of biological rhythm. To study the effect of low dose radiation on behavioral rhythm, zebrafish (Danio rerio) was used as a model organism in this study. The early embryos of zebrafish were irradiated at doses of 0.01, 0.1, and 1 Gy to observe the changes in zebrafish development, circadian rhythm, key clock genes, related RNA and protein expression, and melatonin. The results revealed that 0.1 and 1 Gy radiation could lead to different degrees of telencephalic nerve cell apoptosis and the formation of vacuolar structures. 0.1 and 1 Gy radiation could reduce the hatching rate of zebrafish embryos at 72 hpf and delay embryo hatching. The analysis of circadian behavior at 120 hpf demonstrated that 1 Gy dose of radiation altered the circadian rhythm of zebrafish, as well as decreased the distance, amplitude, and phase of movement. RT-PCR analysis of the key clock genes (bmal1b, clock1a, per1b, per2, cry2, and nr1d1) involved in regulating circadian rhythm was performed. The results showed that 1 Gy radiation could interfere with the expression of clock genes in zebrafish embryos and upregulate bmal1b, clock1a, and per1b. Western blot experiments further verified the protein expression of key clock genes, bmal1b and clock. Detection of melatonin secretion at different time points over 24 h showed that radiation doses of 0.1 and 1 Gy could increase melatonin secretion. Based on these findings, it is speculated that a certain dose of radiation may affect melatonin secretion, which impacts the telencephalon structure and ontogeny of zebrafish, delays hatching, and changes the circadian rhythm. This effect is thought to be achieved through upregulating the expression of circadian rhythm genes, clock1a and per1b and related proteins, which may be responsible for the abnormal circadian rhythm caused by radiation.
Collapse
Affiliation(s)
- Weichao Zhao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Liang Mao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Chuqi He
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dexin Ding
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China, Hengyang, Hunan 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy,University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; Hunan Province Key Laboratory of Typical Evironmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
3
|
Konefał A, Lniak W, Rostocka J, Orlef A, Sokół M, Kasperczyk J, Jarząbek P, Wrońska A, Rusiecka K. Influence of a shape of gold nanoparticles on the dose enhancement in the wide range of gold mass concentration for high-energy X-ray beams from a medical linac. Rep Pract Oncol Radiother 2020; 25:579-585. [PMID: 32494232 DOI: 10.1016/j.rpor.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/07/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Aim This work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs' shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac. Background Due to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles' shape etc. Method The simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures. Results The dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles - two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed. Conclusions It was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.
Collapse
Affiliation(s)
- Adam Konefał
- Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Wioletta Lniak
- Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Justyna Rostocka
- Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Andrzej Orlef
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Department of Medical Physics, Gliwice, Poland
| | - Maria Sokół
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Department of Medical Physics, Gliwice, Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Paulina Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksandra Wrońska
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| | - Katarzyna Rusiecka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Capillary electrophoresis with dual detection UV/C 4D for monitoring myrosinase-mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal Chim Acta 2019; 1085:117-125. [PMID: 31522725 DOI: 10.1016/j.aca.2019.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022]
Abstract
Capillary electrophoresis (CE) with dual UV and conductivity detection was used for the first time to monitor the functionalization of gold nanoparticles (AuNPs), a process catalyzed by an enzyme, myrosinase (Myr). A thiol glucosinolate (GL-SH) designed by our group was used as substrate. Hydrolysis of free and immobilized GL-SH was characterized using off-line and on-line CE-based enzymatic assays. The developed approaches were validated using sinigrin, a well-referenced substrate of Myr. Michaelis-Menten constant of the synthetized GL-SH was comparable to sinigrin, showing that they both have similar affinity towards Myr. It was demonstrated that transverse diffusion of laminar flow profiles was well adapted for in-capillary Mixing of nanoparticles (AuNPs) with proteins (Myr) provided that the incubation time is inferior to 20 min. Only low reaction volume (nL to few μL) and short analysis time (<5 min) were required. The electrophoretic conditions were optimized in order to evaluate and to confirm the AuNPs stability before and after functionalization by CE/UV based on surface plasmon resonance band red-shifting. The hydrolysis of the functionalized AuNPs was subsequently evaluated using the developed CE-C4D/UV approach. Repeatabilities of enzymatic assays, of electrophoretic analyses and of batch-to-batch functionalized AuNPs were excellent.
Collapse
|