1
|
Liedel C, Rieckmann K, Baums CG. A critical review on experimental Streptococcus suis infection in pigs with a focus on clinical monitoring and refinement strategies. BMC Vet Res 2023; 19:188. [PMID: 37798634 PMCID: PMC10552360 DOI: 10.1186/s12917-023-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Streptococcus suis (S. suis) is a major pig pathogen worldwide with zoonotic potential. Though different research groups have contributed to a better understanding of the pathogenesis of S. suis infections in recent years, there are still numerous neglected research topics requiring animal infection trials. Of note, animal experiments are crucial to develop a cross-protective vaccine which is highly needed in the field. Due to the severe clinical signs associated with S. suis pathologies such as meningitis and arthritis, implementation of refinement is very important to reduce pain and distress of experimentally infected pigs. This review highlights the great diversity of clinical signs and courses of disease after experimental S. suis pig infections. We review clinical read out parameters and refinement strategies in experimental S. suis pig infections published between 2000 and 2021. Currently, substantial differences exist in describing clinical monitoring and humane endpoints. Most of the reviewed studies set the body temperature threshold of fever as high as 40.5°C. Monitoring intervals vary mainly between daily, twice a day and three times a day. Only a few studies apply scoring systems. Published scoring systems are inconsistent in their inclusion of parameters such as body temperature, feeding behavior, and respiratory signs. Locomotion and central nervous system signs are more common clinical scoring parameters in different studies by various research groups. As the heterogenicity in clinical monitoring limits the comparability between studies we hope to initiate a discussion with this review leading to an agreement on clinical read out parameters and monitoring intervals among S. suis research groups.
Collapse
Affiliation(s)
- Carolin Liedel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Karoline Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Christoph G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany.
| |
Collapse
|
2
|
Chen D, Liu X, Xu S, Chen D, Zhou L, Ge X, Han J, Guo X, Yang H. TNF-α induced by porcine reproductive and respiratory syndrome virus inhibits the replication of classical swine fever virus C-strain. Vet Microbiol 2019; 234:25-33. [PMID: 31213269 DOI: 10.1016/j.vetmic.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Porcine productive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) both are major pathogens of swine that pose a great threat to the Chinese pig industry. It has been found that PRRSV infection can lead to vaccination failure of CSFV C strain-derived modified live vaccine (CSFV-C) by interfering with the immune responses to the latter. To investigate whether PRRSV can suppress CSFV-C replication, we created a 3D4/21-based cell line PAM39 that is susceptible to both viruses by expressing PRRSV receptors CD163 and CD169, and then investigated their interplay under the condition of either sequential or simultaneous co-infection. The most significant suppressive effect came from the sequential infection when the cells were first infected by PRRSV and then followed by CSFV-C at an interval of 6 h. In addition, this effect was independent of PRRSV strains. Mechanistically, PRRSV induced an elevated level of a subset of pro-inflammatory cytokines, especially tumor necrosis factor (TNF-α), through the nuclear factor κB (NF-κB) signaling pathway to inhibit the replication of CSFV-C in vitro. Thus, our studies provide an alternative explanation on PRRSV-induced CSFV vaccination failure, and this has an important implication in CSF vaccination and control.
Collapse
Affiliation(s)
- Dongjie Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowen Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
3
|
Ji W, Huang Q, Sun L, Wang H, Yan Y, Sun J. A novel endolysin disruptsStreptococcus suiswith high efficiency. FEMS Microbiol Lett 2015; 362:fnv205. [DOI: 10.1093/femsle/fnv205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
|
4
|
Prophage lysin Ply30 protects mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus infections. Appl Environ Microbiol 2015; 81:7377-84. [PMID: 26253669 DOI: 10.1128/aem.02300-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci.
Collapse
|
5
|
Wang W, Chen X, Xue C, Du Y, Lv L, Liu Q, Li X, Ma Y, Shen H, Cao Y. Production and immunogenicity of chimeric virus-like particles containing porcine reproductive and respiratory syndrome virus GP5 protein. Vaccine 2012; 30:7072-7. [PMID: 23036496 DOI: 10.1016/j.vaccine.2012.09.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 01/28/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat in swine industry and causes heavy economic losses worldwide. Currently, the available vaccines are the inactivated and attenuated virus vaccines, but the use of PRRSV in their production raises the issue of safety. We developed a chimeric virus-like particles (VLPs) vaccine candidate for PRRSV protection. The chimeric VLPs was composed of M1 protein from H1N1 influenza virus and a fusion protein, denoted as NA/GP5, containing the cytoplasmic and transmembrane domains of H1N1 virus NA protein and PRRSV GP5 protein. Vaccination of BALB/c mice with 10 μg of chimeirc VLPs by intramuscular immunization stimulated antibody responses to GP5 protein, and induced cellular immune response. The data suggested that the chimeric VLP vaccine candidate may provide a new strategy for further development of vaccines against PRRSV infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhao Z, Qin Y, Lai Z, Peng L, Cai X, Wang L, Guo X, Yang H. Microbial ecology of swine farms and PRRS vaccine vaccination strategies. Vet Microbiol 2011; 155:247-56. [PMID: 22014373 DOI: 10.1016/j.vetmic.2011.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/23/2011] [Indexed: 01/03/2023]
Abstract
The present study investigated the microbial ecology and vaccination strategies against porcine reproductive and respiratory syndrome (PRRS) in field condition. Four representative farms with a history of PRRS were included in this study. Over the almost 3-year period, the average detection rate was 68.9%, making PRRSV the first most frequently detected virus, followed by porcine circovirus type 2 (PCV2) (64.2%), pseudorabies virus (PRV) (11.03%) and classical swine fever virus (CSFV) (4.41%). Streptococcus suis (77.92%), Haemophilus parasuis (51.25%) and Escherichia coli (52.39%), Pasteurella multocida (26.77%) were isolated most frequently in association with PRRSV. Under the present microbial ecology, production performances of sows their offspring after mass vaccination with a PRRS attenuated vaccine were evaluated. In addition, large scale PRRS vaccines usage and efficacy were further performed. The results indicated that mass vaccination following our immunization program can improve health status and production performances of both sows (2ml/i.m. booster after 4 weeks, and then immunized quarterly) and their offsprings (1ml/i.m. on 14-18 days of age).
Collapse
Affiliation(s)
- Zhanzhong Zhao
- Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|