1
|
Wang H, Liu J, Zhu P, Shi L, Liu Y, Yang X, Yang X. Single-nucleus transcriptome reveals cell dynamic response of liver during the late chick embryonic development. Poult Sci 2024; 103:103979. [PMID: 38941785 PMCID: PMC11261130 DOI: 10.1016/j.psj.2024.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
The late embryonic development of the liver, a major metabolic organ, remains poorly characterized at single cell resolution. Here, we used single-nucleus RNA-sequencing (snRNA-seq) to characterize the chicken liver cells at 2 embryonic development time points (E14 and D1). We uncovered 8 cell types including hepatocytes, endothelial cells, hepatic stellate cells, erythrocytes, cholangiocytes, kupffer cells, mesothelial cells, and lymphocytes. And we discovered significant differences in the abundance of different cell types between E14 and D1. Moreover, we characterized the heterogeneity of hepatocytes, endothelial cells, and mesenchymal cells based on the gene regulatory networks of each clusters. Trajectory analyses revealed 128 genes associated with hepatocyte development and function, including apolipoprotein genes involved hepatic lipid metabolism and NADH dehydrogenase subunits involved hepatic oxidative phosphorylation. Furthermore, we identified the differentially expressed genes (DEGs) between E14 and D1 at the cellular levels, which contribute to changes in liver development and function. These DEGs were significantly enriched in PPAR signaling pathways and lipid metabolism related pathways. Our results presented the single-cell mapping of chick embryonic liver at late stages of development and demonstrated the metabolic changes across the 2 age stages at the cellular level, which can help to further study the molecular development mechanism of embryonic liver.
Collapse
Affiliation(s)
- Huimei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pinhui Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lin Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
3
|
Li J, Li Z, Ran J, Yang C, Lin Z, Liu Y. LC/MS-based lipidomics to characterize breed-specific and tissue-specific lipid composition of chicken meat and abdominal fat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Ouchi Y, Yamato M, Chowdhury VS, Bungo T. Adenosine 5'-monophosphate induces hypothermia and alters gene expressions in the brain and liver of chicks. Brain Res Bull 2021; 172:14-21. [PMID: 33862124 DOI: 10.1016/j.brainresbull.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The adenosine A1 receptor is important for body temperature regulation in mammals; however, little is known about its function in avian species. In this study, we investigated the effects of the adenosine A1 receptor agonist and antagonist (adenosine 5'-monophosphate [5'-AMP] and 8 p-sulfophenyl theophylline [8-SPT], respectively) on thermoregulation in chickens. Male chicks were used in this study. After administration of 5'-AMP and 8-SPT, the rectal temperature, plasma metabolites, and gene expressions in the hypothalamus and liver were measured. The rectal temperature was reduced by peripheral administration of 5'-AMP, and the hypothermic effect of 5'-AMP was attenuated by central injection of 8-SPT in chicks. In the hypothalamus, the mRNA level of the agouti-related protein (AgRP) was increased by 5'-AMP administration, whereas it was suppressed by 8-SPT. The plasma levels of free fatty acid were elevated in 5'-AMP-treated chicks and that elevation was suppressed by the 8-SPT treatment. The gene expression of proopiomelanocortin in the hypothalamus was affected by 8-SPT. Nevertheless, the gene expressions of the thermoregulation-related genes, such as the thyrotropin-releasing hormone, were not affected by 5'-AMP and 8-SPT. Hepatic gene expressions related to lipid intake and metabolism were suppressed by 5'-AMP. However, the gene expression of the uncoupling protein was upregulated by 5'-AMP. Based on these results, birds, like mammals, will undergo adenosine A1 receptor-induced hypothermia. In conclusion, it is suggested that 5'-AMP-mediated hypothermia via the adenosine A1 receptor may affect the central melanocortin system and suppress hepatic lipid metabolism in chickens.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan
| | - Miko Yamato
- Faculty of Applied Biological Science, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan
| | | | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8528, Japan.
| |
Collapse
|
5
|
Su S, Wang Y, Chen C, Suh M, Azain M, Kim WK. Fatty Acid Composition and Regulatory Gene Expression in Late-Term Embryos of ACRB and COBB Broilers. Front Vet Sci 2020; 7:317. [PMID: 32671107 PMCID: PMC7330006 DOI: 10.3389/fvets.2020.00317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Cobb broilers (COBB) have been heavily selected for their production performance in the past several decades, while the Athens Canadian Random Bred (ACRB) chickens, a meat-type breed, have been kept as a non-selected control strain. The purpose of this study was to compare these two lines of chickens at late embryonic development and identify the molecular markers and fatty acid profiles underlining their differences in growth performance due to selection. Fertilized eggs of the ACRB (n = 6) and COBB (n = 6) were used at 14 and 18 embryonic days. Genes involved in lipogenesis and myogenesis were measured using quantitative real-time reverse transcroption-polymerase chain reaction (RT-PCR), and fatty acid (FA) compositions of egg yolk, muscle, and liver were measured using gas chromatography. COBB had higher egg weight, embryo weight, and breast and fat ratio. The gene expression in the liver showed an interaction between age and breed on FASN expression, with the highest level in COBB at E18. ACRB had higher ApoB and MTTP expression, but lower SREBP-1 expression compared to COBB. No difference was found in myogenesis gene expression in the muscle between two breeds. For the FA composition, muscle was largely affected by both breed and age. Yolk and liver were affected mainly by breed and age, respectively. Constant interaction effects in docosahexaenoic acid (DHA), indicating the highest level in all the tested tissues of ACRB at E14 and the constant main effects with higher myristic, palmitic, and gondoic, but lower linolenic acid in the liver and yolk of COBB compared to the levels in those of ACRB. Finally, fat accumulation in the liver had no obvious difference between the breeds but was higher when embryo was older. In conclusion, broiler breed affects egg, embryo, and tissue weight, as well as FA composition in initial egg yolk and throughout the embryonic development. The highest docosahexaenoic percentage was observed in ACRB, indicating that genetic selection may result in fatty acid profile changes such as lower DHA content in chicken tissues and eggs.
Collapse
Affiliation(s)
- Shengchen Su
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Yidi Wang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders & Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Michael Azain
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Developmental changes in hepatic lipid metabolism of chicks during the embryonic periods and the first week of posthatch. Poult Sci 2020; 99:1655-1662. [PMID: 32111330 PMCID: PMC7587903 DOI: 10.1016/j.psj.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The liver is the main site of de novo lipogenesis in poultry, and hepatic lipid metabolism disorder will lead to excessive abdominal fat deposition or fatty liver disease, finally causing huge economic loss. The present study was conducted to investigate developmental changes in hepatic lipid metabolism of chicks from embryonic periods to the first week after hatching. Liver samples were collected from embryonic day 11 (E11) to the age of day 7 posthatch (D7) for lipid metabolism analysis. Hematoxylin–eosin and Oil Red O staining analysis showed that hepatic lipids increased gradually during embryonic period and declined posthatch; The sum of hepatic triglycerides and cholesterol reached the peak at E19 and D1 by ELISA analysis (P < 0.05). Acetyl-CoA carboxylase, fatty acid synthase, and acyl-CoA desaturase 1 mRNA expression in the liver were higher from E17 to D1 with the peak at E19 when compared with those at E13 and E15 (P < 0.05). Hepatic elongase of very long-chain fatty acids 6 and microsomal triglyceride transfer protein mRNA abundance were lower during embryonic periods but reached relative higher level after hatching (P < 0.05). On the contrary, hepatic carbohydrate response element binding protein (ChREBP), carnitine palmitoyltransferase 1, and peroxisome proliferators–activated receptor α expression were higher during embryonic periods but decreased posthatch (P < 0.05). The mRNA abundance of sterol-regulatory element binding protein 1c was the lowest at E13 and E15, then increased gradually from E17 to D1, while decreased from D3 to D7 little by little (P < 0.05). In summary, hepatic lipogenesis genes have different expression patterns during the embryonic periods and the first week of posthatch, which might be activated by ChREBP during embryonic periods; fatty acid oxidation was enhanced around the hatched day but declined posthatch. These findings will broaden the understanding of physiological characteristics and dynamic pattern about hepatic lipid metabolism in chicks.
Collapse
|
7
|
Ge XK, Wang AA, Ying ZX, Zhang LG, Su WP, Cheng K, Feng CC, Zhou YM, Zhang LL, Wang T. Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poult Sci 2019; 98:887-895. [PMID: 30239873 DOI: 10.3382/ps/pey434] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/26/2018] [Indexed: 01/14/2023] Open
Abstract
This experiment was conducted to evaluate the effects of bile acids (BAs) on the growth performance and lipid metabolism of broilers fed with different energy level diets. 480 one-day-old Arbor Acres broilers (45.01 ± 0.26 g) were allotted to a 2 × 2 factorial design with 2 levels of energy (basal or high-energy level) and 2 levels of BAs (with or without BAs supplementation), resulting in 4 groups of 8 replicates; the experiment lasted 42 d. High-energy diets decreased the feed/gain ratio (F/G) from 1 to 21 d (P < 0.05), and increased the liver index and abdominal fat percentage at 42 d (P < 0.05). The serum total triglyceride (TG) and high-density lipoprotein cholesterol at 42 d were increased by high-energy diets (P < 0.05), while the hepatic lipoprotein lipase (LPL) activity at 21 and 42 d was decreased (P < 0.05). BAs supplementation increased the body weight at 21 d and decreased the F/G during entire period (P < 0.05), as well as improved the carcass quality reflected by decreased abdominal fat percentage at 42 d and increased breast muscle percentage at 21 and 42 d (P < 0.05). The serum TG at 21 and 42 d were decreased by BAs (P < 0.05), and the hepatic LPL activity at 42 d was increased (P < 0.05). In addition, high-energy diets increased the expression of sterol regulatory element binding transcription factor 1, acetyl-CoA carboxylase, and fatty acid synthase (P < 0.05), while BAs diets decreased these genes expression (P < 0.05). Moreover, BAs supplementation also increased the expression of carnitine palmitoyltransferase 1 (P < 0.05), which was increased in high-energy groups (P < 0.05). In conclusion, BAs supplementation could increase growth performance, elevate carcass quality, and improve lipid metabolism in broilers.
Collapse
Affiliation(s)
- X K Ge
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - A A Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - Z X Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - L G Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - W P Su
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - K Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - C C Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - L L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| | - T Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu 210095, Nanjing, P. R. China
| |
Collapse
|
8
|
Huang JZ, Huang LM, Zeng QJ, Huang EF, Liang HP, Wei Q, Xie XH, Ruan JM. Distribution and quantitative analysis of CIDEa and CIDEc in broiler chickens: accounting for differential fat deposition between strains. Br Poult Sci 2017; 59:173-179. [PMID: 29219006 DOI: 10.1080/00071668.2017.1415426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Differences in the expression of CIDEa and CIDEc in 20 different tissues were examined. Both CIDEa and CIDEc mRNA transcripts were predominantly but variably expressed in white adipose tissue (WAT) but were also expressed at moderate levels in the kidney and liver and at lower levels in the ovary. Interestingly, among WAT types, both CIDEa and CIDEc were expressed at the lowest levels in heart coronary WAT. 2. To better understand the roles of CIDEa and CIDEc in the fat deposition of broiler chickens, the differences in lipid droplet (LD) size and mRNA levels of CIDEa and CIDEc between lean-type and fat-type broiler chicken lines were studied. LD sizes were larger in fat-type broiler lines, and CIDEa and CIDEc mRNA levels in white adipose, kidney and liver tissues were significantly higher in fat-type broiler lines than in their lean counterparts. 3. Developmental expression patterns of CIDEa and CIDEc mRNA were analysed in different tissue types (WAT, liver and kidney) in Arbor Acres broiler chickens, and CIDEa and CIDEc mRNA expression levels increased during sequential developmental stages, achieving peak expression levels at week 6. 4. These observations suggest that the functions of CIDEa and CIDEc reflect inherent characteristics of lipid metabolism that contribute to the differences in fat deposition between strains. The results in this study contribute to a more robust understanding of the tissue distribution and expression patterns of CIDEa and CIDEc mRNA and facilitate further research concerning the molecular mechanism underlying fat deposition in broiler chickens.
Collapse
Affiliation(s)
- J Z Huang
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - L M Huang
- b College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , P. R. China
| | - Q J Zeng
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - E F Huang
- c Department of Animal Science , Jiangxi Biotech Vocational College , Nanchang , P. R. China
| | - H P Liang
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - Q Wei
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - X H Xie
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| | - J M Ruan
- a Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang , P. R. China
| |
Collapse
|
9
|
Li WZ, Zhao SM, Huang Y, Yang MH, Pan HB, Zhang X, Ge CR, Gao SZ. Expression of lipogenic genes during porcine intramuscular preadipocyte differentiation. Res Vet Sci 2012; 93:1190-4. [PMID: 22795880 DOI: 10.1016/j.rvsc.2012.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 11/30/2022]
Abstract
Intramuscular fat (IMF) content plays an important role in meat quality. Triglyceride (TG) metabolism in intramuscular adipocytes is strongly associated with the intramuscular fat deposition. To better understand the mechanisms leading to IMF deposition we compared the expression levels of genes related to preadipocyte differentiation and lipogenesis in the intramuscular preadipocytes isolated from the longissimus muscle of Wujin and Landrace pigs. The results showed that the intramuscular preadipocytes could differentiate into mature adipocytes in vitro. Triglyceride content in adipocytes isolated from Wujin pigs was higher than Landrace pigs during the middle and later phases of preadipocyte differentiation. The expression levels of genes related to preadipocyte differentiation such as PPARG and CEBPA showed differential expression between Wujin and Landrace porcine adipocytes during the early stage of differentiation. The expression levels of lipogenic genes such as FASN and SREBF1 were significantly higher in Wujin porcine intramuscular preadipocytes than in Landrace intramuscular preadipocytes at the middle and the later stages of differentiation. This suggests that preadipocyte differentiation and lipogenesis exhibited breed-related scheduling.
Collapse
Affiliation(s)
- W Z Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Strömqvist M, Olsson JA, Kärrman A, Brunström B. Transcription of genes involved in fat metabolism in chicken embryos exposed to the peroxisome proliferator-activated receptor alpha (PPARα) agonist GW7647 or to perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA). Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:29-36. [PMID: 22465071 DOI: 10.1016/j.cbpc.2012.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 12/23/2022]
Abstract
Perfluoroalkyl acids (PFAAs) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are developmental toxicants in various animal classes, including birds. Both compounds interact with peroxisome proliferator-activated receptors (PPARs), but it is not known whether activation of PPARs is involved in their embryo toxicity in birds. We exposed chicken embryos via egg injection at a late developmental stage to GW7647, a potent PPARα agonist in mammals, and to PFOS or PFOA. Mortality was induced by PFOS and PFOA but not by GW7647. Transcripts of a number of genes activated by PPARα agonists in mammals were analyzed in liver and kidney of 18-day-old embryos. Several of the genes were induced in both liver and kidney following exposure to GW7647. Treatment with PFOA resulted in induction of acyl-coenzyme A oxidase mRNA in liver, whereas none of the genes were significantly induced by PFOS treatment. No up-regulation of gene transcription was found in kidney following treatment with PFOS or PFOA. Principal component analysis showed that PFOA caused an mRNA expression pattern in liver more similar to the pattern induced by GW7647 than PFOS did. Our findings do not support that the embryo mortality by PFOS and PFOA in chicken embryos involves PPARα activation.
Collapse
Affiliation(s)
- Marie Strömqvist
- Department of Environmental Toxicology, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
11
|
Zhai W, Bennett LW, Gerard PD, Pulikanti R, Peebles ED. Effects of in ovo injection of carbohydrates on somatic characteristics and liver nutrient profiles of broiler embryos and hatchlings. Poult Sci 2012; 90:2681-8. [PMID: 22080004 DOI: 10.3382/ps.2011-01532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Effects of the in ovo injection of commercial diluent supplemented with dextrin or with dextrin in combination with various other carbohydrates on the somatic characteristics and liver nutrient profiles of Ross × Ross 708 broiler embryos and chicks were investigated. Results include information concerning the gluconeogenic energy status of the liver before and after hatch. Eggs containing live embryos were injected in the amnion on d 18 of incubation using an automated multiple-egg injector for the delivery of the following carbohydrates dissolved in 0.4 mL of commercial diluent: 1) 6.25% glucose and 18.75% dextrin; 2) 6.25% sucrose and 18.75% dextrin; 3) 6.25% maltose and 18.75% dextrin; and 4) 25% dextrin. Also, a noninjected control and a 0.4-mL diluent-injected control were included. Body weight relative to set egg weight on d 19 of incubation (E19) was increased by the injection of all carbohydrate solutions, and on the day of hatch was increased by the injection of diluent, sucrose and dextrin, and maltose and dextrin solutions. Hatchability of the fertilized eggs, residual yolk sac weight, and liver weight were not affected by any injection treatment; however, as compared with the 0.4 mL diluent-injected group, all of the supplementary carbohydrates, except for the glucose and dextrin combination group, increased liver glycogen and glucose concentrations on E19. Furthermore, all carbohydrates, except for the 25% dextrin treatment, decreased liver fat concentration on E19. From E19 to the day of hatch, liver glycogen concentrations dropped dramatically from an average of 3.2 to 0.6%. Despite treatment differences observed on E19 for liver glycogen, glucose, and fat concentrations, these differences were lost by the day of hatch. Nevertheless, liver glycogen and glucose concentrations were positively correlated on the day of hatch. In conclusion, the in ovo injection of various supplemental carbohydrates dissolved in 0.4 mL of commercial diluent altered the liver nutrient profile of Ross × Ross 708 broiler embryos before hatch. However, the subsequent pattern of energy utilization during the hatching process modified these effects.
Collapse
Affiliation(s)
- W Zhai
- Department of Poultry Science, Mississippi State University, MS, USA
| | | | | | | | | |
Collapse
|
12
|
Zhai W, Gerard PD, Pulikanti R, Peebles ED. Effects of in ovo injection of carbohydrates on embryonic metabolism, hatchability, and subsequent somatic characteristics of broiler hatchlings. Poult Sci 2011; 90:2134-43. [PMID: 21933993 DOI: 10.3382/ps.2011-01418] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The effects of the in ovo injection of different carbohydrate solutions on the internal egg temperature (IT), hatchability, and time of hatch of embryonated Ross × Ross 708 broiler hatching eggs were determined. In addition, the BW, liver weight, yolk sac weight (YSW), and yolk-free BW (YFBW) of the embryos on d 19.5 of incubation and of the chicks on day of hatch were determined. Eggs containing live embryos were injected in the amnion on d 18.5 of incubation using an automated multiple-egg injector. Solution injections delivered 1.2 mL of physiological saline (0.85%) alone or with a supplemental carbohydrate. The following supplemental carbohydrates were separately dissolved in saline at a concentration of 0.3 g/mL: glucose, fructose, sucrose, maltose, and dextrin. Temperature transponders were implanted in the air cells of embryonated and nonembryonated eggs after in ovo injection for the detection of IT at 6, 14, and 22 h after injection. The IT of embryonated eggs was significantly greater than that of nonembryonated eggs at all 3 times after the treatment period. Eggs that were injected with saline with or without supplemental carbohydrates experienced a reduction in IT when compared with control eggs whose shells were perforated without solution delivery, and the decrease in IT was associated with a delay in hatch time. Liver weight was negatively related to YSW and positively related to YFBW, and YSW was negatively related to YFBW. Although the saline and carbohydrate solution injections increased chick BW compared with noninjected controls, chick YFBW was decreased in the maltose- and sucrose-injected groups. In conclusion, the injection of 1.2 mL of saline with or without supplemental carbohydrates lowered embryonic metabolism, as reflected by a lower IT and a delay in time of hatch. However, effects of the different carbohydrate solutions on yolk absorption and tissue deposition in yolk-free embryos varied. These results suggest that lower volumes for solutions containing maltose, sucrose, or fructose should be considered for in ovo injection.
Collapse
Affiliation(s)
- W Zhai
- Department of Poultry Science, Mississippi State University, Mississipi State, MS, USA
| | | | | | | |
Collapse
|