1
|
Chen M, Yang Y, Ying Y, Huang J, Sun M, Hong M, Wang H, Xie S, Chen D. ABC Transporters and CYP3A4 Mediate Drug Interactions between Enrofloxacin and Salinomycin Leading to Increased Risk of Drug Residues and Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020403. [PMID: 36830313 PMCID: PMC9952136 DOI: 10.3390/antibiotics12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/22/2023] Open
Abstract
Enrofloxacin (ENR) is one of the most common drugs used in poultry production to treat bacterial diseases, and there is a high risk of drug interactions (DDIs) between polyether anticoccidial drugs added to poultry feed over time. This may affect the efficacy of antibiotics or lead to toxicity, posing a potential risk to the environment and food safety. This study aimed to investigate the DDI of ENR and salinomycin (SAL) in broilers and the mechanism of their DDI. We found that SAL increased the area under the curve and elimination half-life of ENR and ciprofloxacin (CIP) by 1.3 and 2.4 times, 1.2 and 2.5 times, respectively. Cytochrome 3A4 (CYP3A4), p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) were important factors for the DDI between ENR and SAL in broilers. ENR and SAL are substrates of CYP3A4, P-gp and BCRP in broilers; ENR and SAL inhibited the expression of CYP3A4 activity in a time- and concentration-dependent. Meanwhile, ENR downregulated the expression of P-gp and BCRP in a time- and concentration-dependent manner. A single oral administration of SAL inhibited CYP3A4, P-gp, and BCRP, but long-term mixed feeding upregulated the expression of CYP3A4, P-gp, and BCRP. Molecular docking revealed that ENR and SAL compete with each other for CYP3A4 to affect hepatic metabolism, and compete with ATP for P-gp and BCRP binding sites to inhibit efflux. ENR and SAL in broilers can lead to severe DDI. Drug residues and resistance following co-administration of ENR and SAL and other SAL-based drug-feed interactions warrant further study.
Collapse
Affiliation(s)
- Min Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Yujuan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Yupeng Ying
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Jiamin Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Haizhen Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.X.); (D.C.); Tel.: +86-027-8728-7323 (D.C.)
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.X.); (D.C.); Tel.: +86-027-8728-7323 (D.C.)
| |
Collapse
|
2
|
Comparative Study on Synergistic Toxicity of Enrofloxacin Combined with Three Antibiotics on Proliferation of THLE-2 Cell. Antibiotics (Basel) 2022; 11:antibiotics11030394. [PMID: 35326859 PMCID: PMC8944827 DOI: 10.3390/antibiotics11030394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Little attention has been paid to the problem of the combined toxicity of accumulated antibiotics on humans from food and clinical treatments. Therefore, we used human hepatocytes to study the joint toxicity of four common antibiotics. The cytotoxicity of enrofloxacin (ENR), combined with ciprofloxacin (CFX), florfenicol (FFC), or sulfadimidine (SMD) on THLE-2 cells was determined by CCK-8 assays; then their joint toxicity was evaluated using CalcuSyn 2.0. Dose–effect curves and median-effect plots established on large amounts of data and CI values were calculated to judge the nature of the combination’s interaction. ED50, ED75, and ED90 were predicted to elucidate the changing trend of the concentration on the toxicity of each drug pair. The ENR-CFX and ENR-FFC pairs exhibited synergistic toxicity only at special concentration rates, while ENR and SMD synergistically induced cytotoxicity at almost all the concentration rates studied. The mixed ratio was a significant factor for synergistic toxicity and should be evaluated in all combined effect studies. These results suggested that the combined toxicity of these four drugs should be taken into account in their risk assessment.
Collapse
|
3
|
Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2022; 51:754-787. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ciprofloxacin (CIP) (human use) and enrofloxacin (ENR) (veterinary use) are synthetic anti-infectious medications that belong to the second generation of fluoroquinolones. They have a wide antimicrobial spectrum and strong bactericidal effects at very low concentrations via enzymatic inhibition of DNA gyrase and topoisomerase IV, which are required for DNA replication. They also have high bioavailability, rapid absorption with favorable pharmacokinetics and excellent tissue penetration, including cerebral spinal fluid. These features have made them the most applied antibiotics in both human and veterinary medicine. ENR is marketed exclusively for animal medicine and has been widely used as a therapeutic veterinary antibiotic, resulting in its residue in edible tissues and aquatic environments, as well as the development of resistance and toxicity. Estimation of the risks to humans due to antimicrobial resistance produced by CIP and ENR is important and of great interest. Moreover, in rare cases due to their overdose and/or prolonged administration, the development of CIP and ENR toxicity may occur. The toxicity of these fluoroquinolones antimicrobials is mainly related to reactive oxygen species (ROS) and oxidative stress (OS) generation, besides metabolism-related toxicity. Therefore, CIP is restricted in pregnant and lactating women, pediatrics and elderly similarly ENR do in the veterinary field. This review manuscript aims to identify the toxicity induced by ROS and OS as a common sequel of CIP and ENR. Furthermore, their metabolism and the role of metabolizing enzymes were reported.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - YaQin Yang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Aránzazu Martinez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
4
|
Xu X, Lu Q, Yang Y, Martínez MA, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A proposed "steric-like effect" for the slowdown of enrofloxacin antibiotic metabolism by ciprofloxacin, and its mechanism. CHEMOSPHERE 2021; 284:131347. [PMID: 34323809 DOI: 10.1016/j.chemosphere.2021.131347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The results of monitoring over the years have shown that the mixing and coexistence of various low-level antibiotic residual pollutants has increased significantly, among which, the problems of enrofloxacin (ENR) and ciprofloxacin (CIP) were more prominent. At present, research studies on the metabolism of ENR or CIP are focused on the individual drugs, and there is no relevant research reporting on the effect of the combination of the two antibiotics on the metabolism of ENR. This research study evaluated the effect of CIP on ENR metabolism in pigs and its mechanism in vivo and in vitro. The results showed that CIP changed the pharmacokinetics of ENR through the inhibition of CYP3A29 and the "steric-like effect" of ENR binding to CYP3A29, which increased the residual concentration of ENR in pigs, a result that requires an extension of the withdrawal period. In order to ensure human health, the combined use of these two drugs, CIP and ENR, must be avoided in veterinary medicine in food producing animals.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqin Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
5
|
Huang W, Xiong Y, Xia C, Hu X. Effects of osthol on activity, mRNA and protein expression of Cyp3a in rats
in vivo. Biopharm Drug Dispos 2020; 41:64-71. [PMID: 31925794 DOI: 10.1002/bdd.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Wei Huang
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
- The First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310006 China
| | - Yu‐qing Xiong
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
| | - Chun‐hua Xia
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
| | - Xiao Hu
- Institute of Clinical PharmacologyNanchang University Nanchang 330006 China
| |
Collapse
|
6
|
Antonissen G, Devreese M, De Baere S, Martel A, Van Immerseel F, Croubels S. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens. Food Chem Toxicol 2017; 101:75-83. [DOI: 10.1016/j.fct.2017.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
|
7
|
Mátis G, Neogrády Z, Csikó G, Gálfi P, Fébel H, Jemnitz K, Veres Z, Kulcsár A, Kenéz Á, Huber K. Epigenetic effects of dietary butyrate on hepatic histone acetylation and enzymes of biotransformation in chicken. Acta Vet Hung 2013; 61:477-90. [PMID: 23974937 DOI: 10.1556/avet.2013.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the study was to investigate the in vivo epigenetic influences of dietary butyrate supplementation on the acetylation state of core histones and the activity of drug-metabolising microsomal cytochrome P450 (CYP) enzymes in the liver of broiler chickens in the starter period. One-day-old Ross 308 broilers were fed a starter diet without or with sodium butyrate (1.5 g/kg feed) for 21 days. After slaughtering, nucleus and microsome fractions were isolated from the exsanguinated liver by multi-step differential centrifugation. Histone acetylation level was detected from hepatocyte nuclei by Western blotting, while microsomal CYP activity was examined by specific enzyme assays. Hyperacetylation of hepatic histone H2A at lysine 5 was observed after butyrate supplementation, providing modifications in the epigenetic regulation of cell function. No significant changes could be found in the acetylation state of the other core histones at the acetylation sites examined. Furthermore, butyrate did not cause any changes in the drugmetabolising activity of hepatic microsomal CYP2H and CYP3A37 enzymes, which are mainly involved in the biotransformation of most xenobiotics in chicken. These data indicate that supplementation of the diet with butyrate probably does not have any pharmacokinetic interactions with simultaneously applied xenobiotics.
Collapse
Affiliation(s)
- Gábor Mátis
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - Zsuzsanna Neogrády
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - György Csikó
- 2 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Science Budapest Hungary
| | - Péter Gálfi
- 2 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Science Budapest Hungary
| | - Hedvig Fébel
- 3 Research Institute for Animal Breeding and Nutrition Herceghalom Hungary
| | - Katalin Jemnitz
- 4 Hungarian Academy of Sciences Institute of Molecular Pharmacology, Research Centre of Natural Sciences Budapest Hungary
| | - Zsuzsanna Veres
- 4 Hungarian Academy of Sciences Institute of Molecular Pharmacology, Research Centre of Natural Sciences Budapest Hungary
| | - Anna Kulcsár
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - Ákos Kenéz
- 5 University of Veterinary Medicine Department of Physiology Hanover Germany
| | - Korinna Huber
- 5 University of Veterinary Medicine Department of Physiology Hanover Germany
| |
Collapse
|
8
|
Xu RA, Xu ZS, Lin GY, Hu LF, Wang XQ, Ma JS. Effect of Repeated Wuniu Early Tea Administration on the CYP450 Activity Using a Cocktail Method. Indian J Pharm Sci 2013; 75:94-8. [PMID: 23901167 PMCID: PMC3719156 DOI: 10.4103/0250-474x.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 11/25/2022] Open
Abstract
Wuniu early tea (Camellia sinensis) is an important beverage consumed in China. Up to date, a lot of methods for identifying and chemical analysing have been done. However, there is no report on the effects of Wuniu early tea on cytochrome P450 isozymes. Therefore, the present objective of our study was to evaluate the potential effects of Wuniu early tea on cytochrome P450 isozymes P2C9, P1A2, P2C19 and P2B6 in rats with a cocktail approach including, matching probe drugs of tolbutamide, phenacetin, omeprazole and bupropion. These four probe drugs were simultaneously administered to rats after repeated Wuniu early tea administration. The pharmacokinetics of the probes in the plasma was simultaneous determined by high-performance liquid chromatography-mass spectrometry. The t1/2 and AUC(0-∞) of tolbutamide increased significantly and CLz decreased remarkably in test rats after repeated Wuniu early tea administration. However, the main pharmacokinetic parameters of the other three probe drugs were not significantly different between control and test rats. The findings in this study suggested that Wuniu early tea could inhibit cytochrome P2C9 while did not influence on cytochrome P1A2, cytochrome P2C19 and cytochrome P2B6.
Collapse
Affiliation(s)
- R A Xu
- The First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325 035, China
| | | | | | | | | | | |
Collapse
|
9
|
Pharmacokinetic interaction of enrofloxacin/trimethoprim combination following single-dose intraperitoneal and oral administration in rats. Eur J Drug Metab Pharmacokinet 2013; 39:11-6. [DOI: 10.1007/s13318-013-0142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
10
|
Zhou C, Li XC, Fang WH, Yang XL, Hu LL, Zhou S, Zhou JF. Inhibition of CYP450 1A and 3A by berberine in crucian carp Carassius auratus gibelio. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:360-6. [PMID: 21802525 DOI: 10.1016/j.cbpc.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/20/2022]
Abstract
Berberine has long been considered as an antibiotic candidate in aquaculture. However, studies regarding its effects on drug-metabolizing enzymes in fish are still limited. In the present study, the effects of berberine on cytochrome P4501A (CYP1A) and CYP3A in crucian carp were investigated. Injection of different concentrations of berberine (0, 5, 25, 50, and 100mg/kg) inhibited the CYP1A mRNA expression, thereby inhibiting further the catalytic activity of CYP1A-related ethoxyresorufin-O-deethylase (EROD). Furthermore, both CYP1A expression and EROD activity were further inhibited with increasing berberine concentrations. In addition, the CYP3A expressions at both the mRNA and the protein levels were downregulated by higher berberine concentrations. The catalytic activity of CYP3A-related erythromycin N-demethylase (ERND) was also inhibited by berberine at a dose of no less than 25mg/kg. Moreover, at the berberine concentration exceeding 25mg/kg, the inhibition of CYP3A expression and ERND activity increased with increasing berberine concentrations. In vitro experiments were also performed. When berberine was pre-incubated with the crucian carp liver microsomes, it competitively inhibited the corresponding EROD activity with the IC(50) of 11.7 μM. However, the ERND activity was slightly inhibited by berberine with the IC(50) of 206.4 μM. These results suggest that, in crucian carp, berberine may be a potent inhibitor to CYP1A, whereas the CYP3A inhibition needs a higher concentration of berberine.
Collapse
Affiliation(s)
- Chang Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key and Open Laboratory of Marine and Estuarine Fisheries Resources and Ecology, Ministry of Agriculture, shanghai 200090, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Hu X, Li XC, Sun BB, Fang WH, Zhou S, Hu LL, Zhou JF. Effects of enrofloxacin on cytochromes P4501A and P4503A in Carassius auratus gibelio (crucian carp). J Vet Pharmacol Ther 2011; 35:216-23. [PMID: 21726236 DOI: 10.1111/j.1365-2885.2011.01318.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, although enrofloxacin (EF) as a widely used veterinary medicine has begun to apply to treating fish bacterial infections, the researches on the effects of EF on their main drug metabolic enzymes are limited. To investigate the effects of EF on fish cytochromes P450 (CYPs) 1A and 3A, the enzymatic activities and expressions (mRNA and protein) of crucian carp CYP1A and CYP3A after EF administration were examined. For CYP1A, in the in vivo experiments, EF exhibited potent inhibition on the CYP1A-related ethoxyresorufin-O-deethylase (EROD) activity, as well as CYP1A expressions at both protein and mRNA levels, at 24 h after administration with different EF dosages (3, 10, 30, and 60 mg/kg); Furthermore, CYP1A enzymatic activity and expressions at both protein and mRNA levels decreased more with increasing EF dosages. Additionally, the in vitro experimental results showed that, after incubated with microsomes, EF did not change the EROD activity through interacting directly with CYP1A. For CYP3A, the in vitro and in vivo experimental results demonstrated that EF could inhibit the CYP3A-related erythromycin N-demethylase activity in a time- and dose-dependent manner, while it did not suppress CYP3A expressions at both protein and mRNA levels after administration with EF for a short period (no more than 24 h); however, after injection with EF at a high dose (10 mg/kg) for a long period, the CYP3A protein and mRNA reached their lowest levels at 96 and 48 h, respectively. These results indicate that EF can suppress CYP1A expressions in a dose-dependent manner, thereby inhibiting further its catalytic activity; meanwhile, both the interactions of EF with CYP3A and the expressions decrease (protein and mRNA) caused by EF contribute to the CYP3A inhibition.
Collapse
Affiliation(s)
- X Hu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
12
|
LIU N, GUO M, MO F, SUN YH, YUAN Z, CAO LH, JIANG SX. Involvement of P-glycoprotein and cytochrome P450 3A in the metabolism of florfenicol of rabbits. J Vet Pharmacol Ther 2011; 35:202-5. [DOI: 10.1111/j.1365-2885.2011.01310.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|