1
|
Hwang JA, Kim JE, Kim HS, Park J, Lee JH. Susceptibility of Koi, Koi×Red Common Carp, and Red Common Carp×Koi to Koi Herpesvirus (KHV). Dev Reprod 2020; 24:277-286. [PMID: 33537514 PMCID: PMC7837415 DOI: 10.12717/dr.2020.24.4.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/14/2020] [Accepted: 10/25/2020] [Indexed: 11/17/2022]
Abstract
The disease-causing koi herpes virus (KHV), also known as cyprinid herpesvirus-3 (CyHV-3), causes mass mortality of koi and carp. Koi (Cyprinus carpio) is a host for KHV, one of 12 virus species in the Alloherpesviridae family. We examined the effects of KHV disease koi (KK), and on koi×red common carp (KR) and red common carp×koi (RK) cross, using a virus challenge test. The infected fish had clinical signs that included gill necrosis and skin lesions. The RK and KR were highly more resistant (cumulative mortality: RK; 6% and KR; 8%) to KHV infection than KK fish (cumulative mortality: 28%). KHV DNA was confirmed in the tissues of all dead fish in groups by use of polymerase chain reaction (PCR), and the presence of the KHV protein in kidney was confirmed by immunohistochemistry. Histological analysis showed severe gill lesions and fusion of the lamellae in KK fish, but less severe damage in RK fish. In immunohistochemistry analysis, the KHV protein localized in the cytoplasm of infected kidney cells of KK, but the cross groups had lower levels of KHV antigen. Our data indicate that the cross groups had increased resistance to KHV disease.
Collapse
Affiliation(s)
- Ju-Ae Hwang
- Inland Aquaculture Research Center, National Institute of
Fisheries Science (NIFS), Changwon 51688,
Korea
| | - Jung Eun Kim
- Inland Aquaculture Research Center, National Institute of
Fisheries Science (NIFS), Changwon 51688,
Korea
| | - Hyeong Su Kim
- Inland Aquaculture Research Center, National Institute of
Fisheries Science (NIFS), Changwon 51688,
Korea
| | - Junseong Park
- Inland Aquaculture Research Center, National Institute of
Fisheries Science (NIFS), Changwon 51688,
Korea
| | - Jeong-Ho Lee
- Inland Aquaculture Research Center, National Institute of
Fisheries Science (NIFS), Changwon 51688,
Korea
| |
Collapse
|
2
|
Boutier M, Gao Y, Donohoe O, Vanderplasschen A. Current knowledge and future prospects of vaccines against cyprinid herpesvirus 3 (CyHV-3). FISH & SHELLFISH IMMUNOLOGY 2019; 93:531-541. [PMID: 31369858 DOI: 10.1016/j.fsi.2019.07.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Aquaculture is one of the world's most important and fastest growing food production sectors, with an average annual growth of 5.8% during the period 2001-2016. Common carp (Cyprinus carpio) is one of the main aquatic species produced for human consumption and is the world's third most produced finfish. Koi carp, on the other hand, are grown as a popular ornamental fish. In the late 1990s, both of these sectors were threatened by the emergence of a deadly disease caused by cyprinid herpesvirus 3 (CyHV-3; initially called koi herpesvirus or KHV). Since then, several research groups have focused their work on developing methods to fight this disease. Despite increasing knowledge about the pathobiology of this virus, there are currently no efficient and cost-effective therapeutic methods available to fight this disease. Facing the lack of efficient treatments, safe and efficacious prophylactic methods such as the use of vaccines represent the most promising approach to the control of this virus. The common carp production sector is not a heavily industrialized production sector and the fish produced have low individual value. Therefore, development of vaccine methods adapted to mass vaccination are more suitable. Multiple vaccine candidates against CyHV-3 have been developed and studied, including DNA, bacterial vector, inactivated, conventional attenuated and recombinant attenuated vaccines. However, there is currently only one vaccine commercially available in limited regions. The present review aims to summarize and evaluate the knowledge acquired from the study of these vaccines against CyHV-3 and provide discussion on future prospects.
Collapse
Affiliation(s)
- Maxime Boutier
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Owen Donohoe
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; Bioscience Research Institute, Athlone Institute of Technology, Athlone, Co Westmeath, Ireland
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
3
|
Kopf RK, Boutier M, Finlayson CM, Hodges K, Humphries P, King A, Kingsford RT, Marshall J, McGinness HM, Thresher R, Vanderplasschen A. Biocontrol in Australia: Can a carp herpesvirus (CyHV-3) deliver safe and effective ecological restoration? Biol Invasions 2019. [DOI: 10.1007/s10530-019-01967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Zancanaro G, Beltrán Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Koi herpes virus disease (KHV). EFSA J 2017; 15:e04907. [PMID: 32625568 PMCID: PMC7009960 DOI: 10.2903/j.efsa.2017.4907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Koi herpes virus (KHV) disease has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of KHV disease to be listed, Article 9 for the categorisation of KHV disease according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to KHV disease. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether KHV disease can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, the assessment on compliance of KHV disease with the criteria as in Annex IV of the AHL, for the application of the disease prevention and control rules referred to in Article 9(1) is also inconclusive, as well as which animal species can be considered to be listed for KHV disease according to Article 8(3) of the AHL.
Collapse
|
5
|
Widespread and enduring demographic collapse of invasive common carp (Cyprinus carpio) in the Upper Mississippi River System. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1405-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Expectation for infectious disease studies using environmental DNA. Uirusu 2016; 66:171-178. [PMID: 29081469 DOI: 10.2222/jsv.66.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Environmental DNA analysis for micro- and macro-organisms is rapidly developing. Environmental DNA means total DNA present in environmental media such as water or soil, and includes DNA contained in the organisms themselves and extra-organism DNA of macro-organisms. Analysis of environmental DNA can be divided into two methods, species-specific detection and meta-barcoding, which can be used according to each purpose. Applicable subjects are all organisms (including viruses in this case) with DNA as genes, and application to rivers, ponds, lakes and marines has been reported. In this paper, the present situation of environmental DNA analysis of macro organisms is described, and the possibility of application to infectious disease studies and the problems to be solved are discussed.
Collapse
|
7
|
Furlan EM, Gleeson D, Hardy CM, Duncan RP. A framework for estimating the sensitivity of eDNA surveys. Mol Ecol Resour 2015; 16:641-54. [PMID: 26536842 DOI: 10.1111/1755-0998.12483] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 10/25/2015] [Accepted: 10/29/2015] [Indexed: 01/03/2023]
Abstract
Imperfect sensitivity, or imperfect detection, is a feature of all survey methods that needs to be accounted for when interpreting survey results. Detection of environmental DNA (eDNA) is increasingly being used to infer species distributions, yet the sensitivity of the technique has not been fully evaluated. Sensitivity, or the probability of detecting target DNA given it is present at a site, will depend on both the survey method and the concentration and dispersion of target DNA molecules at a site. We present a model to estimate target DNA concentration and dispersion at survey sites and to estimate the sensitivity of an eDNA survey method. We fitted this model to data from a species-specific eDNA survey for Oriental weatherloach, Misgurnus anguillicaudatus, at three sites sampled in both autumn and spring. The concentration of target DNA molecules was similar at all three sites in autumn but much higher at two sites in spring. Our analysis showed the survey method had ≥95% sensitivity at sites where target DNA concentrations were ≥11 molecules per litre. We show how these data can be used to compare sampling schemes that differ in the number of field samples collected per site and number of PCR replicates per sample to achieve ≥95% sensitivity at a given target DNA concentration. These models allow researchers to quantify the sensitivity of eDNA survey methods to optimize the probability of detecting target species, and to compare DNA concentrations spatially and temporarily.
Collapse
Affiliation(s)
- Elise M Furlan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Dianne Gleeson
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Christopher M Hardy
- CSIRO Land & Water, GPO Box 1700, Canberra, ACT, 2601, Australia.,Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, 2617, Australia
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| |
Collapse
|
8
|
Cui LC, Guan XT, Liu ZM, Tian CY, Xu YG. Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): A promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine 2015; 33:3092-9. [PMID: 25981489 DOI: 10.1016/j.vaccine.2015.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
Abstract
Spring viremia of carp virus (SVCV) and koi herpesvirus (KHV) are highly contagious and pathogenic to cyprinid fish, causing enormous economic losses in aquaculture. Although DNA vaccines reported in recent years could induce protective immune responses in carps against these viruses via injection, there are a number of consequences and uncertainties related to DNA vaccination. Therefore, more effective and practical method to induce protective immunity such as oral administration would be highly desirable. In this study, we investigated the utilities of a genetically engineered Lactobacillus plantarum (L. plantarum) coexpressing glycoprotein (G) of SVCV and ORF81 protein of KHV as oral vaccine to induce protective immunity in carps via oral vaccination. The surface-displayed recombinant plasmid pYG-G-ORF81 was electroporated into L. plantarum, giving rise to LP/pYG-G-ORF81, where expression and localization of G-ORF81 fusion protein from the LP/pYG-G-ORF81 was identified by SDS-PAGE, Western blotting and immunofluorescence assay. Bait feed particles containing the LP/pYG-G-ORF81 were used as vaccine to immunize carps via gastrointestinal route. Compared to control groups, the carps orally immunized with the LP/pYG-G-ORF81 were induced significant levels of immunoglobulin M (IgM), and its immunogenicity was confirmed by viral loads reduction detected by PCR assay after virus challenge followed by an effective protection rate 71% in vaccinated carps and 53% in vaccinated koi until at days 65 post challenge, respectively. Our study here demonstrates, for the first time, the ability of recombinant L. plantarum as oral vaccine against SVCV and KHV infection in carps, suggesting a practical multivalent strategy for the control of spring viremia of carp and koi herpesvirus disease.
Collapse
Affiliation(s)
- Li-Chun Cui
- College of Wildlife Resource, Northeast Forestry University, Harbin, China
| | - Xue-Ting Guan
- College of Wildlife Resource, Northeast Forestry University, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhong-Mei Liu
- Technology Center, Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, China
| | | | - Yi-Gang Xu
- College of Wildlife Resource, Northeast Forestry University, Harbin, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
9
|
Ossiboff RJ, Newton AL, Seimon TA, Moore RP, McAloose D. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta). J Vet Diagn Invest 2015; 27:392-5. [PMID: 25943128 DOI: 10.1177/1040638715584793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles.
Collapse
Affiliation(s)
| | - Alisa L Newton
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY
| | - Tracie A Seimon
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY
| | - Robert P Moore
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY
| | - Denise McAloose
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY
| |
Collapse
|
10
|
Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses. Adv Virus Res 2015; 93:161-256. [PMID: 26111587 DOI: 10.1016/bs.aivir.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Léa Morvan
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ma Michelle D Peñaranda
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - David M Stone
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Keith Way
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Steven J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
11
|
Boutier M, Ronsmans M, Ouyang P, Fournier G, Reschner A, Rakus K, Wilkie GS, Farnir F, Bayrou C, Lieffrig F, Li H, Desmecht D, Davison AJ, Vanderplasschen A. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging. PLoS Pathog 2015; 11:e1004690. [PMID: 25700279 PMCID: PMC4336323 DOI: 10.1371/journal.ppat.1004690] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. Common carp, and its colorful ornamental variety koi, is one of the most economically valuable species in aquaculture. Since the late 1990s, the common and koi carp culture industries have suffered devastating worldwide losses due to cyprinid herpesvirus 3 (CyHV-3). In the present study, we report the development of an attenuated recombinant vaccine against CyHV-3. Two genes were deleted from the viral genome, leading to a recombinant virus that is no longer capable of causing the disease but can be propagated in cell culture (for vaccine production) and infect fish when added to the water, thereby immunizing the fish. This attenuated recombinant vaccine also had a drastic defect in spreading from vaccinated to non-vaccinated cohabitant fish. The vaccine induced a protective mucosal immune response capable of preventing the entry of virulent CyHV-3 and is compatible with the simultaneous vaccination of a large number of carp by simply immersing the fish in water containing the vaccine. This vaccine represents a promising tool for controlling the most dreadful disease ever encountered by the carp culture industries. In addition, the present study highlights the importance of the CyHV-3 - carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ping Ouyang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Guillaume Fournier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anca Reschner
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S. Wilkie
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frédéric Farnir
- Biostatistics and Bioinformatics, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Calixte Bayrou
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - François Lieffrig
- Fish Pathology Lab, Department of Biotechnology, CER Groupe, Marloie, Belgium
| | - Hong Li
- USDA-ARS-ADRU, Washington State University, Pullman, Pullman, Washington, United States of America
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
12
|
Fujioka H, Yamasaki K, Furusawa K, Tamura K, Oguro K, Kurihara S, Seki S, Oshima SI, Imajoh M. Prevalence and characteristics of Cyprinid herpesvirus 3 (CyHV-3) infection in common carp (Cyprinus carpio L.) inhabiting three rivers in Kochi Prefecture, Japan. Vet Microbiol 2014; 175:362-8. [PMID: 25554244 DOI: 10.1016/j.vetmic.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes lethal disease in common and koi carp. Mortality by CyHV-3 disease has not been reported since 2011 in Kochi Prefecture, Japan. Here, we detected and quantified CyHV-3 in common carp inhabiting three rivers in the prefecture to examine if the carp are carriers of CyHV-3 as a source of infection. CyHV-3 DNA was detected in 16.7% (12/72) of brain samples in Kagami River, 3.9% (3/76) of brain and 3.9% (3/76) of gill samples in Monobe River, and 5.1% (4/79) of brain and 1.3% (1/79) of gill samples in Wajiki River. CyHV-3 genotypes identified in the 23 samples were classified as the J genotype A1 that has been found in Japan. The CyHV-3 DNA load did not differ statistically between sampling months, indicating that CyHV-3 has been silent in common carp, unlike Lake Biwa where the annual reactivation occurs in spring. Taken together, our results represented definitive evidence that seasonal changes in water temperature do not affect CyHV-3 activity in carp. Considering that infectious virus was not isolated from CyHV-3 DNA-positive samples, it was suggested that CyHV-3 establishes a latent infection in carp populations inhabiting Kagami River, Monobe River and Wajiki River. Further, the presence of circular or concatameric CyHV-3 DNA was detected in five of 23 CyHV-3 DNA-positive samples. Common carp inhabiting Lake Biwa were reported previously to harbor linear but not circular CyHV-3 DNA. This difference suggested that the CyHV-3 genome may be circularized for long-term maintenance without active viral replication.
Collapse
Affiliation(s)
- Hiroya Fujioka
- Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenichi Yamasaki
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Keiki Furusawa
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kazuki Tamura
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kazuki Oguro
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Sumire Kurihara
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Shingo Seki
- Fish Ecology Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Syun-ichirou Oshima
- Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Imajoh
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
13
|
Rakus K, Ouyang P, Boutier M, Ronsmans M, Reschner A, Vancsok C, Jazowiecka-Rakus J, Vanderplasschen A. Cyprinid herpesvirus 3: an interesting virus for applied and fundamental research. Vet Res 2013; 44:85. [PMID: 24073814 PMCID: PMC3850573 DOI: 10.1186/1297-9716-44-85] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae is the causative agent of a lethal, highly contagious and notifiable disease in common and koi carp. The economic importance of common and koi carp industries together with the rapid spread of CyHV-3 worldwide, explain why this virus became soon after its isolation in the 1990s a subject of applied research. In addition to its economic importance, an increasing number of fundamental studies demonstrated that CyHV-3 is an original and interesting subject for fundamental research. In this review, we summarized recent advances in CyHV-3 research with a special interest for studies related to host-virus interactions.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, B-4000, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gotesman M, Kattlun J, Bergmann SM, El-Matbouli M. CyHV-3: the third cyprinid herpesvirus. DISEASES OF AQUATIC ORGANISMS 2013; 105:163-74. [PMID: 23872859 PMCID: PMC3961040 DOI: 10.3354/dao02614] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Common carp (including ornamental koi carp) Cyprinus carpio L. are ecologically and economically important freshwater fish in Europe and Asia. C. carpio have recently been endangered by a third cyprinid herpesvirus, known as cyprinid herpesvirus-3 (CyHV-3), the etiological agent of koi herpesvirus disease (KHVD), which causes significant morbidity and mortality in koi and common carp. Clinical and pathological signs include epidermal abrasions, excess mucus production, necrosis of gill and internal organs, and lethargy. KHVD has decimated major carp populations in Israel, Indonesia, Taiwan, Japan, Germany, Canada, and the USA, and has been listed as a notifiable disease in Germany since 2005, and by the World Organisation for Animal Health since 2007. KHVD is exacerbated in aquaculture because of the relatively high host stocking density, and CyHV-3 may be concentrated by filter-feeding aquatic organisms. CyHV-3 is taxonomically grouped within the family Alloherpesviridae, can be propagated in a number of cell lines, and is active at a temperature range of 15 to 28°C. Three isolates originating from Japan (KHV-J), USA (KHV-U), and Israel (KHV-I) have been sequenced. CyHV-3 has a 295 kb genome with 156 unique open reading frames and replicates in the cell nucleus, and mature viral particles are 170 to 200 nm in diameter. CyHV-3 can be detected by multiple PCR-based methods and by enzyme-linked immunosorbent assay. Several modes of immunization have been developed for KHVD; however, fish immunized with either vaccine or wild-type virus may become carriers for CyHV-3. There is no current treatment for KHVD.
Collapse
Affiliation(s)
- Michael Gotesman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Julia Kattlun
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Sven M. Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Corresponding author.
| |
Collapse
|
15
|
Uchii K, Okuda N, Minamoto T, Kawabata Z. An emerging infectious pathogen endangers an ancient lineage of common carp by acting synergistically with conspecific exotic strains. Anim Conserv 2012. [DOI: 10.1111/j.1469-1795.2012.00604.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - N. Okuda
- Center for Ecological Research; Kyoto University; Shiga; Japan
| | - T. Minamoto
- Research Institute for Humanity and Nature; Kyoto; Japan
| | - Z. Kawabata
- Research Institute for Humanity and Nature; Kyoto; Japan
| |
Collapse
|
16
|
Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z. Estimation of fish biomass using environmental DNA. PLoS One 2012; 7:e35868. [PMID: 22563411 PMCID: PMC3338542 DOI: 10.1371/journal.pone.0035868] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/27/2012] [Indexed: 11/25/2022] Open
Abstract
Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems.
Collapse
|