1
|
Olajossy B, Wronski N, Madej E, Komperda J, Szczygieł M, Wolnicka-Glubisz A. RIPK4 Downregulation Reduces ABCG2 Expression, Increasing BRAF-Mutated Melanoma Cell Susceptibility to Cisplatin- and Doxorubicin-Induced Apoptosis. Biomolecules 2024; 14:1573. [PMID: 39766280 PMCID: PMC11674099 DOI: 10.3390/biom14121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Melanoma cells remain resistant to chemotherapy with cisplatin (CisPt) and doxorubicin (DOX). The abnormal expression of Receptor-Interacting Protein Kinase 4 (RIPK4) in certain melanomas contributes to tumour growth through the NFκB and Wnt/β-catenin signalling pathways, which are known to regulate chemoresistance and recurrence. Despite this, the role of RIPK4 in response to chemotherapeutics in melanoma has not been reported. In this study, we examined how the downregulation and overexpression of RIPK4 affect the sensitivity of BRAF-mutated melanoma cells (A375 and WM266.4) to CisPt and DOX along with determining the underlying mechanism. Using two RIPK4 silencing methods (siRNA and CRISPR/Cas9) and overexpression (dCas9-VPR), we assessed CisPt and DOX-induced apoptosis using caspase 3/7 activity, annexin V/7AAD staining, and FASC analysis. In addition, qRT-PCR and Western blotting were used to detect apoptosis-related genes and proteins such as cleaved PARP, p53, and cyclin D1. We demonstrated that the overexpression of RIPK4 inhibits, while its downregulation enhances, CisPt- or DOX-induced apoptosis in melanoma cells. The effects of downregulation are similar to those observed with pre-incubation with cyclosporin A, an ABCG2 inhibitor. Additionally, our findings provide preliminary evidence of crosstalk between RIPK4, BIRC3, and ABCG2. The results of these studies suggest the involvement of RIPK4 in the observed resistance to CisPt or DOX.
Collapse
Affiliation(s)
- Bartlomiej Olajossy
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Norbert Wronski
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewelina Madej
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Joanna Komperda
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| |
Collapse
|
2
|
Salvador D, Bastos V, Oliveira H. Hyperthermia Enhances Doxorubicin Therapeutic Efficacy against A375 and MNT-1 Melanoma Cells. Int J Mol Sci 2021; 23:ijms23010035. [PMID: 35008457 PMCID: PMC8744762 DOI: 10.3390/ijms23010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/28/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence has alarmingly increased in the last few decades, creating a need for novel treatment approaches. Thus, we evaluated the combinatorial effect of doxorubicin (DOX) and hyperthermia on A375 and MNT-1 human melanoma cell lines. Cells were treated with DOX for 24, 48, and 72 h and their viabilities were assessed. The effect of DOX IC10 and IC20 (combined at 43 °C for 30, 60, and 120 min) on cell viability was further analyzed. Interference on cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis upon treatment (with 30 min at 43 °C and DOX at the IC20 for 48 h) were analyzed by flow cytometry. Combined treatment significantly decreased cell viability, but not in all tested conditions, suggesting that the effect depends on the drug concentration and heat treatment duration. Combined treatment also mediated a G2/M phase arrest in both cell lines, as well as increasing ROS levels. Additionally, it induced early apoptosis in MNT-1 cells, while in A375 cells this effect was similar to the one caused by hyperthermia alone. These findings demonstrate that hyperthermia enhances DOX effect through cell cycle arrest, oxidative stress, and apoptotic cell death.
Collapse
|
3
|
Leeth C, Adkins J, Hay A, Bogers S, Potter A, Witonsky S, Zhu J. Engrafting Horse Immune Cells into Mouse Hosts for the Study of the Acute Equine Immune Responses. Animals (Basel) 2021; 11:ani11102962. [PMID: 34679981 PMCID: PMC8532756 DOI: 10.3390/ani11102962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary For decades, studies using research mice as models for disease have been critical to our current understanding of disease processes and associated immune responses, highlighting the ways in which mouse physiology is different from human and other species. Recent work has been directed at creating mice that can host human immune cells, allowing the study and manipulation of the human immune response without harm to patients. The purpose of this study was to explore to use of mouse hosts for horse immune cells. Horses are difficult to study immunologically as they are expensive to keep, and keeping their environment free of immune triggers is very difficult. Using mice allows us to increase our study numbers and control the environment which improves study reproducibility. In this study, we transferred both horse blood lymphocytes as well as horse bone marrow into specially modified mouse hosts. We found that mice are able to host horse immune cells and that these transferred cells are active. Future work can now build on this study to understand the horse immune response to infectious agents using mice, helping to identify new therapeutic tools to help equine patients. Abstract Immunological studies in the horse are frequently hampered by lack of environmental control, complicated study design, and ethical concerns when performing high risk studies. The purpose of the current study was to investigate the utility of a xenograft model for studying acute equine immune responses. Immunocompromised non obese diabetic (NOD). sudden combined immunodeficiency (scid).gamma-/- (NSG) mice were engrafted with either equine peripheral blood lymphocytes (PBLs) or equine bone marrow to determine an optimal protocol for equine lymphocyte engraftment. We found that both PBL and bone marrow grafts populated the host mice successfully. Bone marrow transplants were technically more challenging and required further processing to retard graft versus host disease. Graft vs host disease was apparent at 28 days post-PBL transfer and 56 days post-bone marrow transfer. The results of these studies support the use of mouse hosts to study acute equine immune responses and that different engraftment techniques can be used depending on the experimental design.
Collapse
Affiliation(s)
- Caroline Leeth
- Department of Animal and Poultry Sciences, 175 West Campus Drive MC 0306, Litton Reaves Hall rm 300, Blacksburg, VA 24061, USA; (J.A.); (A.H.); (A.P.); (J.Z.)
- Correspondence:
| | - Janie Adkins
- Department of Animal and Poultry Sciences, 175 West Campus Drive MC 0306, Litton Reaves Hall rm 300, Blacksburg, VA 24061, USA; (J.A.); (A.H.); (A.P.); (J.Z.)
| | - Alayna Hay
- Department of Animal and Poultry Sciences, 175 West Campus Drive MC 0306, Litton Reaves Hall rm 300, Blacksburg, VA 24061, USA; (J.A.); (A.H.); (A.P.); (J.Z.)
| | - Sophie Bogers
- Virginia Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; (S.B.); (S.W.)
| | - Ashley Potter
- Department of Animal and Poultry Sciences, 175 West Campus Drive MC 0306, Litton Reaves Hall rm 300, Blacksburg, VA 24061, USA; (J.A.); (A.H.); (A.P.); (J.Z.)
| | - Sharon Witonsky
- Virginia Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; (S.B.); (S.W.)
| | - Jing Zhu
- Department of Animal and Poultry Sciences, 175 West Campus Drive MC 0306, Litton Reaves Hall rm 300, Blacksburg, VA 24061, USA; (J.A.); (A.H.); (A.P.); (J.Z.)
| |
Collapse
|
4
|
Huang M, Ji Y, Yan J, Qi T, Zhang SF, Li T, Lü S, Liu Y, Liu M. A nano polymer conjugate for dual drugs sequential release and combined treatment of colon cancer and thrombotic complications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110697. [PMID: 32204009 DOI: 10.1016/j.msec.2020.110697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
Thrombotic complications turn into the second leading cause of death in colon cancer patients due to the hypercoagulable state caused by malignancy. Therefore, it is necessary to treat colon cancer and its thrombosis complications simultaneously. Herein, a nano polymer conjugate based on disulfide cross-linked low-generation peptide dendrimers was developed to treat colon cancer and its thrombotic complications. First, two-generation polyglutamic acid dendrimer was bonded to nattokinase (NK) and then cross-linkers containing disulfide linkages were used to obtain polymer conjugates (NK-G2)n. Then doxorubicin (Dox) was encapsulated. The system can release drugs sequentially due to the dissociation of the polymer conjugates. In vitro thrombolytic experiments exhibited a significant thrombolysis ability of (NK-G2)n. The toxicity and cellular uptake tests on HCT116 cells showed that Dox loaded polymer conjugates had good endocytosis ability and anti-cancer effect. Therefore, this drug delivery system will be a promising strategy to the combined treatment of colon cancer and thrombotic complications.
Collapse
Affiliation(s)
- Mengjie Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanzheng Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jia Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Taomei Qi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shao-Fei Zhang
- Institute of Agroforestry and Technology, Longnan Teacher's College, Longnan 742500, China
| | - Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yongming Liu
- The First School of Clinic Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ. Co-delivery of Doxorubicin and Ceramide in a Liposomal Formulation Enhances Cytotoxicity in Murine B16BL6 Melanoma Cell Lines. AAPS PharmSciTech 2019; 20:99. [PMID: 30719596 DOI: 10.1208/s12249-019-1316-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
This study reports co-delivery of doxorubicin (DOX) and ceramide in a liposomal system in B16BL6 melanoma cell lines for enhanced cytotoxic effects. Different types of ceramides (C6-ceramide, C8-ceramide, and C8-glucosylceramide) and lipids (1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)) were considered in the preparation of liposomes. DOX was encapsulated within liposome, and ceramide was used as the component of the lipid bilayer. The formulations were optimized for size and size distribution, zeta potential, and DOX encapsulation efficiency (EE). Cytotoxic effect on B16BL6 melanoma cell lines was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ceramide based liposome formulations generally provided a mean diameter < 181 nm, a zeta potential, + 35 mV, and EE > 90% DOX EE. Co-delivery of DOX and C8-ceramide with DOTAP liposomes demonstrated significantly higher cytotoxicity as compared to DOX liposomes without ceramide (P < 0.001), and also showed enhanced cellular uptake by B16BL6 cell lines. This study provides basis for developing a co-delivery system of DOX and ceramide for lowering the dose and dose-related side effects of DOX for the treatment of melanoma.
Collapse
|
6
|
Distribution of Glutathione-Stabilized Gold Nanoparticles in Feline Fibrosarcomas and Their Role as a Drug Delivery System for Doxorubicin-Preclinical Studies in a Murine Model. Int J Mol Sci 2018; 19:ijms19041021. [PMID: 29596317 PMCID: PMC5979397 DOI: 10.3390/ijms19041021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Feline injection site sarcomas (FISS) are malignant skin tumors with high recurrence rates despite the primary treatment of radical surgical resections. Adjunctive radiotherapy or chemotherapy with doxorubicin is mostly ineffective. Cellular and molecular causes of multidrug resistance, specific physio-chemical properties of solid tumors impairing drug transport, and the tumor microenvironment have been indicated for causing standard chemotherapy failure. Gold nanoparticles are promising imaging tools, nanotherapeutics, and drug delivery systems (DDS) for chemotherapeutics, improving drug transport within solid tumors. This study was conducted to assess the distribution of 4-nm glutathione-stabilized gold nanoparticles in FISS and their influence on kidney and liver parameters in nude mice. The role of gold nanoparticles as a doxorubicin DDS in FISS was examined to determine the potential reasons for failure to translate results from in vitro to in vivo studies. Grade III tumors characterized by a large area of necrosis at their core displayed positive immuneexpression of tumor-associated macrophages (TAM) at both the periphery and within the tumor core near the area of necrosis. Gold nanoparticles did not cause necrosis at the injection site and had no negative effect on liver and kidney parameters in nude mice. Gold nanoparticles accumulated in the tumor core and at the periphery and co-internalized with TAM—an important observation and potential therapeutic target warranting further investigation. The large area of necrosis and high immunoexpression of TAM, indicating “pro-tumor macrophages”, may be responsible for FISS tumor progression and therapeutic failure. However, further studies are required to test this hypothesis.
Collapse
|
7
|
Zabielska-Koczywąs K, Wojtalewicz A, Lechowski R. Current knowledge on feline injection-site sarcoma treatment. Acta Vet Scand 2017; 59:47. [PMID: 28716129 PMCID: PMC5513368 DOI: 10.1186/s13028-017-0315-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022] Open
Abstract
Feline injection-site sarcomas (FISS) are malignant skin tumours of mesenchymal origin, the treatment of which is a challenge for veterinary surgeons. The role of surgery, radiotherapy and chemotherapy in FISS treatment has been studied, and a correlation between “clean” surgical margins and disease-free survival has been shown. In addition, clean surgical margins are one of the most important factors for achieving a low recurrence rate. The most effective method of FISS treatment includes combining radical surgery with pre- or postoperative radiotherapy. Chemotherapy may be used as a palliative method of treatment or may be considered an adjunctive therapy for surgery and radiotherapy. In cats with FISS without metastasis, the use of immunostimulant treatment with Oncept IL-2, intended as a complementary immunotherapy in association with surgery and brachytherapy, may also be considered to reduce the risk of relapse and increase the time to relapse. Additionally, this review focuses on recent advances in FISS treatment, including the use of novel compounds, such as doxorubicin conjugated to glutathione-stabilized gold nanoparticles, liposomal doxorubicin or tyrosine kinase inhibitors.
Collapse
|
8
|
Horsman MR. Realistic biological approaches for improving thermoradiotherapy. Int J Hyperthermia 2015; 32:14-22. [DOI: 10.3109/02656736.2015.1099169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|