1
|
Radwańska P, Gałdyszyńska M, Piera L, Drobnik J. Kisspeptin-10 increases collagen content in the myocardium by focal adhesion kinase activity. Sci Rep 2023; 13:19977. [PMID: 37968564 PMCID: PMC10651918 DOI: 10.1038/s41598-023-47224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
The aim of the study was to evaluate the role of kisspeptin-10 (KiSS-10) in the regulation of collagen content in cardiac fibroblasts. An attempt was also made to describe the mechanism of the effect of KiSS-10 on collagen metabolism. The studies indicate that kisspeptin-10 significantly increases the content of intracellular collagen in the myocardium. KiSS-10 also elevates the level of phosphorylated focal adhesion kinase (FAK) in human cardiac fibroblasts. The inhibition of FAK negates the stimulatory effect of KiSS-10 on collagen deposition in vitro. These changes correlate with an increase in the level of propeptides of procollagen type I (PICP) and III (PIIICP) in fibroblast culture medium and mouse PIIICP in serum. Moreover, this hormone inhibits the release of metalloproteinases (MMP-1,-2,-9) and elevates the secretion of their tissue inhibitors (TIMP-1,-2,-4). KiSS-10 also enhances the expression of α1 chains of procollagen type I and III in vitro. Thus, KiSS-10 is involved in the regulation of collagen metabolism and cardiac fibrosis. Augmentation of collagen deposition by KiSS-10 is dependent on the protein synthesis elevation, inhibition of MMPs activity (increase of TIMPs release) or decrease of MMPs concentration. The profibrotic activity of KiSS-10 is mediated by FAK and is not dependent on TGF-β1.
Collapse
Affiliation(s)
- Paulina Radwańska
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Małgorzata Gałdyszyńska
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Lucyna Piera
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacek Drobnik
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| |
Collapse
|
2
|
Screening of Differentially Expressed Genes and miRNAs in Hypothalamus and Pituitary Gland of Sheep under Different Photoperiods. Genes (Basel) 2022; 13:genes13061091. [PMID: 35741853 PMCID: PMC9222358 DOI: 10.3390/genes13061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
The reproduction of sheep is affected by many factors such as light, nutrition and genetics. The Hypothalamic-pituitary-gonadal (HPG) axis is an important pathway for sheep reproduction, and changes in HPG axis-related gene expression can affect sheep reproduction. In this study, a model of bilateral ovarian removal and estrogen supplementation (OVX + E2) was applied to screen differentially expressed genes and miRNAs under different photoperiods using whole transcriptome sequencing and reveal the regulatory effects of the photoperiod on the upstream tissues of the HPG axis in sheep. Whole transcriptome sequencing was performed in ewe hypothalamus (HYP) and distal pituitary (PD) tissues under short photoperiod 21st day (SP21) and long photoperiod 21st day (LP21). Compared to the short photoperiod, a total of 1813 differential genes (up-regulation 966 and down-regulation 847) and 145 differential miRNAs (up-regulation 73 and down-regulation 72) were identified in the hypothalamus of long photoperiod group. Similarly, 2492 differential genes (up-regulation 1829 and down-regulation 663) and 59 differential miRNAs (up-regulation 49 and down-regulation 10) were identified in the pituitary of long photoperiod group. Subsequently, GO and KEGG enrichment analysis revealed that the differential genes and target genes of differential miRNA were enriched in GnRH, Wnt, ErbB and circadian rhythm pathways associated with reproduction. Combined with sequence complementation and gene expression correlation analysis, several miRNA-mRNA target combinations (e.g., LHB regulated by novel-414) were obtained. Taken together, these results will help to understand the regulatory effect of the photoperiod on the upstream tissues of HPG in sheep.
Collapse
|
3
|
Wen Z, Qiaoqian Z, Wen S, Yonghong W, Jingwei H. Clinical changes of leptin/ghrelin and PAI-1 levels in adolescent girls with abnormal uterine bleeding-ovulatory dysfunction. Gynecol Endocrinol 2022; 38:345-349. [PMID: 35238278 DOI: 10.1080/09513590.2022.2045938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To observe and compare the expression of energy regulators (leptin/ghrelin) and PAI-1 in girls with abnormal uterine bleeding-ovulatory dysfunction (AUB-O) and healthy adolescent girls. METHODS A total of 80 adolescent girls were studied including 60 with AUB-O and 20 healthy girls. All the general characteristics of subjects including height, weight, age, and age at menarche were collected after consent. The concentration of plasma leptin, ghrelin, PAI-1, and sex hormones was examined using enzyme-linked immunosorbent assay (ELISA) and DXI800 Access immunoassay system respectively. RESULTS Two groups were comparable in the age at menarche, visiting age, postmenarchal years, and BMI SDS (p > .05). Levels of leptin (11.12 ± 4.96 ng/ml vs. 18.59 ± 13.22 ng/ml, p < .001) and PAI-1 (116.40 ± 36.63 ng/ml vs. 173.19 ± 52.44 ng/ml, p < .001) in girls with AUB-O were significantly lower than that in healthy girls, and the levels of ghrelin were significantly higher than that in healthy girls (1.52 ± 4.20 ng/ml vs. 0.43 ± 0.64 ng/ml, p = .01). At the same time, we also found that girls with AUB-O showed negative correlation between the level of leptin, ghrelin, and estradiol. CONCLUSIONS Energy metabolism and coagulation might play a role in the development of AUB-O in adolescent girls.
Collapse
Affiliation(s)
- Zhao Wen
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, PR China
| | - Zeng Qiaoqian
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, PR China
| | - Sun Wen
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, PR China
| | - Wang Yonghong
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, PR China
| | - He Jingwei
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
4
|
Santos BR, dos Anjos Cordeiro JM, Santos LC, Barbosa EM, Mendonça LD, Santos EO, de Macedo IO, de Lavor MSL, Szawka RE, Serakides R, Silva JF. Kisspeptin treatment improves fetal-placental development and blocks placental oxidative damage caused by maternal hypothyroidism in an experimental rat model. Front Endocrinol (Lausanne) 2022; 13:908240. [PMID: 35966095 PMCID: PMC9365946 DOI: 10.3389/fendo.2022.908240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Maternal hypothyroidism is associated with fetal growth restriction, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface. Kisspeptin affects trophoblastic migration and has antioxidant and immunomodulatory activities. This study aimed to evaluate the therapeutic potential of kisspeptin in the fetal-placental dysfunction of hypothyroid Wistar rats. Hypothyroidism was induced by daily administration of propylthiouracil. Kisspeptin-10 (Kp-10) treatment was performed every other day or daily beginning on day 8 of gestation. Feto-placental development, placental histomorphometry, and expression levels of growth factors (VEGF, PLGF, IGF1, IGF2, and GLUT1), hormonal (Dio2) and inflammatory mediators (TNFα, IL10, and IL6), markers of hypoxia (HIF1α) and oxidative damage (8-OHdG), antioxidant enzymes (SOD1, Cat, and GPx1), and endoplasmic reticulum stress mediators (ATF4, GRP78, and CHOP) were evaluated on day 18 of gestation. Daily treatment with Kp-10 increased free T3 and T4 levels and improved fetal weight. Both treatments reestablished the glycogen cell population in the junctional zone. Daily treatment with Kp-10 increased the gene expression levels of Plgf, Igf1, and Glut1 in the placenta of hypothyroid animals, in addition to blocking the increase in 8-OHdG and increasing protein and/or mRNA expression levels of SOD1, Cat, and GPx1. Daily treatment with Kp-10 did not alter the higher protein expression levels of VEGF, HIF1α, IL10, GRP78, and CHOP caused by hypothyroidism in the junctional zone compared to control, nor the lower expression of Dio2 caused by hypothyroidism. However, in the labyrinth zone, this treatment restored the expression of VEGF and IL10 and reduced the GRP78 and CHOP immunostaining. These findings demonstrate that daily treatment with Kp-10 improves fetal development and placental morphology in hypothyroid rats, blocks placental oxidative damage, and increases the expression of growth factors and antioxidant enzymes in the placenta.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima de Lavor
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogeria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
- *Correspondence: Juneo Freitas Silva,
| |
Collapse
|
5
|
Pool KR, Rickard JP, de Graaf SP. Overcoming neuroendocrine and metabolic barriers to puberty: the role of melatonin in advancing puberty in ewe lambs. Domest Anim Endocrinol 2020; 72:106457. [PMID: 32361422 DOI: 10.1016/j.domaniend.2020.106457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
Abstract
Pubertal onset in the ewe is subject to a multitude of physiological and environmental constraints. As seasonal breeders, sheep rely on decreasing photoperiod to enter puberty and the subsequent breeding periods, hindering production. The initiation of puberty defines the reproductive yield of the ewe, and as such is a critical factor influencing production outcomes. Currently, the misconception that ovine puberty is reliant on age results in ewes being bred at over a year old, leading to a substantial unproductive period between birth and first conception. As such, transcending pubertal barriers to allow for earlier initiation of reproductive competency has significant commercial merit. The primary candidate to achieve this is the neurohormone melatonin, a key factor that naturally signals photoperiodic change that facilitates seasonal remodeling of the ovine hypothalamic-hypophyseal-gonadal axis. Despite being known to modulate reproductive seasonality in both the mature ewe and ram, the ability of melatonin to advance ewe puberty remains underutilized in industry. To optimize melatonin application and shape perceptions of breeding ewe lambs, a greater understanding of pubertal impediments and the natural role of melatonin is warranted. This review examines the physiological role and applications of melatonin to advance ewe puberty, and how this may act in conjunction with other physiological and metabolic cues.
Collapse
Affiliation(s)
- K R Pool
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Kisspeptin-10 Induces β-Casein Synthesis via GPR54 and Its Downstream Signaling Pathways in Bovine Mammary Epithelial Cells. Int J Mol Sci 2017; 18:ijms18122621. [PMID: 29206176 PMCID: PMC5751224 DOI: 10.3390/ijms18122621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/15/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Kisspeptins (Kps) play a key role in the regulation of GnRH axis and as an anti-metastasis agent by binding with GPR54. Recently, we observed that the expression of GPR54 was higher in the lactating mammary tissues of dairy cows with high-quality milk (0.81 ± 0.13 kg/day of milk protein yield; 1.07 ± 0.18 kg/day of milk fat yield) than in those with low-quality milk (0.51 ± 0.14 kg/day of milk protein yield; 0.67 ± 0.22 kg/day of milk fat yield). We hypothesized that Kp-10 might regulate the milk protein, β-casein (CSN2) synthesis via GPR54 and its downstream signaling. First, we isolated the bovine mammary epithelial cells (bMECs) from lactating Holstein dairy cows, and treated them with different concentrations of Kp-10. Compared with the control cells, the synthesis of CSN2 is significantly increased at a concentration of 100 nM of Kp-10. In addition, the increased effect of CSN2 synthesis was blocked when the cells were pre-treated with the selective inhibitor of GPR54 Peptide-234 (P-234). Mechanistic study revealed that Kp-10 activated ERK1/2, AKT, mTOR and STAT5 in bMECs. Moreover, inhibiting ERK1/2, AKT, mTOR and STAT5 with U0126, MK2206, Rapamycin and AG490 could block the effects of Kp-10. Together, these results demonstrate that Kp-10 facilitates the synthesis of CSN2 via GPR54 and its downstream signaling pathways mTOR, ERK1/2, STAT5 and AKT.
Collapse
|
7
|
Yin Y, Tang L, Shi L. The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes. Mol Med Rep 2017; 15:1286-1290. [PMID: 28075440 PMCID: PMC5367324 DOI: 10.3892/mmr.2017.6109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells.
Collapse
Affiliation(s)
- Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lian Tang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
8
|
Radwańska P, Kosior-Korzecka U. Relationships between leptin, the KiSS-1/GPR54 system and thyrotropic axis activity in ewe lambs predisposed to the delayed puberty. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|