1
|
Hoa NT, Afzal H, Gundegmaa U, Raadan O, Cheng LT, Chu CY, Doan TD, Chung YC. Enhanced immune response with baculovirus-expressed BoHV-1 glycoprotein D in vaccine development. Vet J 2024; 308:106228. [PMID: 39243806 DOI: 10.1016/j.tvjl.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant pathogen in the alpha-herpesvirus subfamily, primarily infects cattle and causes the upper respiratory disease known as infectious bovine rhinotracheitis (IBR). In silico studies evaluated the BoHV-1 D protein to be non-allergenic, non-toxic, and highly antigenic, highlighting its potential as an antigen for vaccine development. Therefore, this study aimed to evaluate the efficacy of a subunit vaccine using the ectodomain of glycoprotein D (gD34-380) as an antigen. The truncated gD was successfully cloned and expressed in both Escherichia coli (E. coli, termed EgD) and baculovirus (termed BgD) systems, with expected molecular weights of 65 kDa and 50 kDa, respectively. For the vaccine formulation, the gD proteins were used either alone or in combination with in-house inactivated BoHV-1. Vaccination of mice and bovines showed that baculovirus-expressed gD34-380 accelerated the antibody response. Moreover, the BgD-vaccinated group also showed significantly higher neutralizing antibody levels against BoHV-1 than the control group (p<0.0001). In conclusion, our study found that BgD from BoHV-1 can increase the immune response and enhance vaccine efficacy.
Collapse
Affiliation(s)
- Nguyen-Thanh Hoa
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan; Department of Virology, National Institute of Veterinary Research NIVR, Hanoi 11500, Vietnam
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan
| | - Uudamsaikhan Gundegmaa
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul district, Zaisan, Ulaanbaatar 17042, Mongolia
| | - Odbileg Raadan
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul district, Zaisan, Ulaanbaatar 17042, Mongolia
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chun-Yen Chu
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Thu-Dung Doan
- International Program in Animal Vaccine Technology, National Pingtung University Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
2
|
Zhang S, Liu G, Wu W, Yang L, Shirani I, Guo A, Chen Y. Investigation of the Optimal Immunization Dose and Protective Efficacy of an Attenuated and Marker M. bovis-Bovine Herpesvirus Type 1 Combined Vaccine in Rabbits. Animals (Basel) 2024; 14:748. [PMID: 38473133 DOI: 10.3390/ani14050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry; it is a globally prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens associated with BRD. Our previous study attempted to combine the two vaccines and conducted a preliminary investigation of their optimal antigenic ratios. Based on this premise, the research extended its investigation by administering varying vaccine doses in a rabbit model to identify the most effective immunization dosage. After immunization, all rabbits in other immunization dose groups had a normal rectal temperature without obvious clinical symptoms. Furthermore, assays performed on the samples collected from immunized rabbits indicated that there were increased humoral and cellular immunological reactions. Moreover, the histological analysis of the lungs showed that immunized rabbits had more intact lung tissue than their unimmunized counterparts after the challenge. Additionally, there appears to be a positive correlation between the protective efficacy and the immunization dose. In conclusion, the different immunization doses of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine were clinically safe in rabbits; the mix of 2.0 × 108 CFU of M. bovis HB150 and 2.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its highest humoral and cellular immune responses and a more complete morphology of the lung tissue compared with others. These findings determined the optimal immunization dose of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine, laying a foundation for its clinical application.
Collapse
Affiliation(s)
- Sen Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Guoxing Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Wenying Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Li Yang
- Wuhan Keqian Biology Co., Ltd., Wuhan 430200, China
| | - Ihsanullah Shirani
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| |
Collapse
|
3
|
Zhang S, Zhang Y, Liu G, Wang C, Ji Y, Chen J, Hu C, Chen X, Guo A, Chen Y. The Safety and Protective Efficacy Evaluation of an Attenuated M. bovis-BoHV-1 Bivalent Vaccine in Rabbits. Vaccines (Basel) 2023; 11:1698. [PMID: 38006030 PMCID: PMC10674485 DOI: 10.3390/vaccines11111698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the development of attenuated M. bovis HB150 and BoHV-1 gG-/tk- vaccine strains, which were thoroughly assessed for their safety profiles and protective efficacy in cattle. In this study, we applied a combination of vaccines in varying ratios and used a rabbit model to determine the safety and protective efficacy. We used PCR/RT-PCR to detect the postimmunization and challenge shedding of M. bovis and BoHV-1. Additionally, we measured antibody titers and the expression of IFN-β and TNF-α to evaluate the humoral and cellular immune responses, respectively. Furthermore, we performed a histopathological analysis to assess lung damage. Our study provides evidence of the safety and effectiveness of the bivalent M. bovis-BoHV-1 vaccine in rabbits, particularly when applying a combination of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 of the BoHV-1 gG-/tk- strain. The bivalent vaccine significantly enhanced both the long-term antibody immune response and cellular protection against the M. bovis and BoHV-1 challenge. These findings provide a valuable model for the potential application in cattle.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Yisheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guoxing Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Yan Ji
- Key Laboratory of Ruminant Biological Products, Ministry of Agriculture and Rural Affair, Hohhot 010011, China
- The Spirit JinYu Biological Pharmaceutical Co., Ltd., Hohhot 010030, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China
| |
Collapse
|
4
|
Recombinant hexon protein as a new bovine adenovirus type 3 subunit vaccine candidate. J Vet Res 2023; 67:23-31. [PMID: 37008761 PMCID: PMC10062050 DOI: 10.2478/jvetres-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Abstract
Introduction
Bovine adenovirus (BAdV) type 3 causes respiratory and gastroenteric diseases of varying severity in cattle, particularly newborn calves. Trials have been conducted of a vaccination against the diseases caused by BAdV using both modified live-virus and inactivated-virus preparations in cattle, but no commercial BAdV-3 vaccine has yet reached the market. Therefore, there is an urgent need to develop new, safe, and effective vaccines against BAdV-3.
Material and Methods
Recombinant hexon protein (rhexon) of BAdV-3 was expressed in the E. coli system to evaluate immune response in mice and goats. Antibody responses and cytokine levels were analysed and the effects of administrations of different amounts of recombinant protein compared. Long-term antibody production was evaluated by indirect ELISA, and the total immunoglobulin G secreted by goats and mice immunised with the purified rhexon protein was determined.
Results
The immunised mice had a stronger antibody response than the control group at eight weeks post vaccination. The immunised groups also showed significantly higher (P ˂ 0.05) expression of interferon-γ, interleukin 2 (in mice), and interleukin 21 (in goats) at four weeks. Furthermore, vaccination with rhexon was able to induce long-term antibody production for at least 16 weeks in mice and goats.
Conclusion
The rhexon protein induced immune responses, especially long-term antibody production and T helper 1 cell cytokine production in mice and goats. The immunogenic properties of this protein make it a promising subunit vaccine antigen.
Collapse
|
5
|
Otomaru K, Miyahara T, Saita H, Usa A, Ijiri M. Evaluation of antibody response to inactivated bovine ephemeral fever virus vaccine for Japanese Black calves in the field. Anim Sci J 2023; 94:e13904. [PMID: 38100635 DOI: 10.1111/asj.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
The purpose of this study was to investigate the antibody response to the bovine ephemeral fever virus (BEFV) vaccine in Japanese Black calves. Twenty-eight Japanese Black calves, which were raised on an ordinal farm, were divided into two groups. Fifteen calves received the inactivated BEFV vaccine at 12 and 16 weeks of age (vaccination group), and 13 calves did not receive the vaccine (non-vaccination group). Blood samples were obtained at 0, 4, 8, 12, 16, 20, 24, 28, and 32 weeks of age. As the results, in the vaccination group, the antibody titers at 16, 20, 24, 28, and 32 weeks of age were significantly higher than those at 0, 4, 8, and 12 weeks of age (p < 0.01). Additionally, antibody titer in the vaccination group increased after 16 weeks of age and showed a significantly higher level than that in the non-vaccination group throughout the remaining experimental period (p < 0.01). These results might be helpful in establishing a vaccination program against BEFV in calves.
Collapse
Affiliation(s)
- Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takuro Miyahara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroto Saita
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Amane Usa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Moe Ijiri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
6
|
Kornuta CA, Cheuquepán F, Bidart JE, Soria I, Gammella M, Quattrocchi V, Hecker YP, Moore DP, Romera SA, Marin MS, Zamorano PI, Langellotti CA. TLR activation, immune response and viral protection elicited in cattle by a commercial vaccine against Bovine Herpesvirus-1. Virology 2021; 566:98-105. [PMID: 34896902 DOI: 10.1016/j.virol.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Felipe Cheuquepán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Yanina Paola Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Dadin Prando Moore
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Sonia Alejandra Romera
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Del Salvador, Buenos Aires, Argentina
| | - Maia Solange Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Del Salvador, Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
7
|
A Senescence-Like Cellular Response Inhibits Bovine Ephemeral Fever Virus Proliferation. Vaccines (Basel) 2021; 9:vaccines9060601. [PMID: 34200003 PMCID: PMC8227762 DOI: 10.3390/vaccines9060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
During industrial-scale production of viruses for vaccine manufacturing, anti-viral response of host cells can dampen maximal viral antigen yield. In addition to interferon responses, many other cellular responses, such as the AMPK signaling pathway or senescence-like response may inhibit or slow down virus amplification in the cell culture system. In this study, we first performed a Gene Set Enrichment Analysis of the whole-genome mRNA transcriptome and found a senescence-like cellular response in BHK-21 cells when infected with bovine ephemeral fever virus (BEFV). To demonstrate that this senescence-like state may reduce virus growth, BHK-21 subclones showing varying degrees of a senescence-like state were infected with BEFV. The results showed that the BHK-21 subclones showing high senescence staining could inhibit BEFV replication while low senescence-staining subclones are permissive to virus replication. Using a different approach, a senescence-like state was induced in BHK-21 using a small molecule, camptothecin (CPT), and BEFV susceptibility were examined. The results showed that CPT-treated BHK-21 is more resistant to virus infection. Overall, these results indicate that a senescence-like response may be at play in BHK-21 upon virus infection. Furthermore, cell clone selection and modulating treatments using small molecules may be tools in countering anti-viral responses.
Collapse
|
8
|
Garcia LF, Silvio Batista Rodrigues E, Rocha Lino de Souza G, Jubé Wastowski I, Mota de Oliveira F, Torres Pio dos Santos W, Souza Gil E. Impedimetric Biosensor for Bovine Herpesvirus Type 1‐Antigen Detection. ELECTROANAL 2020. [DOI: 10.1002/elan.201900606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | - Wallans Torres Pio dos Santos
- Pharmacy Department Federal University of Jequitinhonha and Mucuri Valleys, Diamantina Minas Gerais 39803-371 Brazil
| | - Eric Souza Gil
- Faculty of Pharmacy Federal University of Goiás, Goiânia 74605-170 Goiás Brazil
| |
Collapse
|
9
|
Ivermectin Inhibits Bovine Herpesvirus 1 DNA Polymerase Nuclear Import and Interferes with Viral Replication. Microorganisms 2020; 8:microorganisms8030409. [PMID: 32183205 PMCID: PMC7143239 DOI: 10.3390/microorganisms8030409] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Bovine herpesvirus1 (BoHV-1) is a major bovine pathogen. Despite several vaccines being available to prevent viral infection, outbreaks are frequent and cause important economic consequences worldwide. The development of new antiviral drugs is therefore highly desirable. In this context, viral genome replication represents a potential target for therapeutic intervention. BoHV-1 genome is a dsDNA molecule whose replication takes place in the nuclei of infected cells and is mediated by a viral encoded DNA polymerase holoenzyme. Here, we studied the physical interaction and subcellular localization of BoHV-1 DNA polymerase subunits in cells for the first time. By means of co-immunoprecipitation and confocal laser scanning microscopy (CLSM) experiments, we could show that the processivity factor of the DNA polymerase pUL42 is capable of being autonomously transported into the nucleus, whereas the catalytic subunit pUL30 is not. Accordingly, a putative classic NLS (cNLS) was identified on pUL42 but not on pUL30. Importantly, both proteins could interact in the absence of other viral proteins and their co-expression resulted in accumulation of UL30 to the cell nucleus. Treatment of cells with Ivermectin, an anti-parasitic drug which has been recently identified as an inhibitor of importin α/β-dependent nuclear transport, reduced UL42 nuclear import and specifically reduced BoHV-1 replication in a dose-dependent manner, while virus attachment and entry into cells were not affected. Therefore, this study provides a new option of antiviral therapy for BoHV-1 infection with Ivermectin.
Collapse
|
10
|
Cheng LT, Zeng YJ, Chu CY, Wang HY. Development of a quick dot blot assay for the titering of bovine ephemeral fever virus. BMC Vet Res 2019; 15:313. [PMID: 31477093 PMCID: PMC6720828 DOI: 10.1186/s12917-019-2059-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Bovine ephemeral fever virus (BEFV) causes fever and muscle stiffness in cattle, resulting in negative economic impact for cattle and dairy farms. During the manufacturing process of inactivated vaccine for virus control, it is important to determine the virus titer, but traditional methods such as plaque assay and TCID50 assay require days of waiting time. We sought to develop a quick dot blot assay for BEFV titering. Results Three different kinds of BEFV antigens were prepared to raise primary antibodies for BEFV detection in dot blot assays: 1) purified BEFV particles, 2) Escherichia coli (E. coli)-expressed BEFV G1 region, and 3) E. coli-expressed BEFV N protein. Results showed that antibodies raised against purified BEFV particles can detect BEFV particles, but it also showed a high background level from the proteins of BHK-21 cells. Antibodies raised against E.coli-expressed BEFV G1 region could not detect BEFV particles in dot blot assays. Finally, antibodies raised against E.coli-expressed BEFV N protein detected BEFV particles with a high signal-to-noise ratio in dot blot assays. Conclusions E.coli-expressed N protein is a suitable antigen for the production of antiserum that can detect BEFV particles with a high signal-to-noise ratio. A dot blot assay kit using this antiserum can be developed as a quick and economical way for BEFV titering. Electronic supplementary material The online version of this article (10.1186/s12917-019-2059-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan, Republic of China
| | - Yu-Jing Zeng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan, Republic of China
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan, Republic of China.
| | - Hsian-Yu Wang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuehfu Road, Neipu, Pingtung, 91201, Taiwan, Republic of China.
| |
Collapse
|