1
|
Vlieghe H, Sousa MJ, Charif D, Amorim CA. Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells 2024; 13:1248. [PMID: 39120279 PMCID: PMC11311681 DOI: 10.3390/cells13151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
RESEARCH QUESTION Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
| | | | | | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, bte B1.55.03, 1200 Brussels, Belgium; (H.V.); (M.J.S.); (D.C.)
| |
Collapse
|
2
|
Mirbahari SN, Amorim CA, Hassani F, Totonchi M, Haddadi M, Valojerdi MR, Dalman A. In-vitro generation of follicle-like structures from human germ cell-like cells derived from theca stem cell combined with ovarian somatic cells. J Ovarian Res 2024; 17:2. [PMID: 38167472 PMCID: PMC10762821 DOI: 10.1186/s13048-023-01315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The objective of this study was to induce the differentiation of human theca stem cells (hTSCs) into germ cell-like cells (hGCLCs) and assess their developmental progression following in vitro 3D culture with ovarian somatic cells within the follicle-like structures. To achieve this, the hTSCs were isolated from small antral follicles of three patients of varying ages and were then seeded in a differentiation medium for 40 days. The differentiated hGCLCs were subsequently aggregated with somatic ovarian cells (cumulus cells and hTSCs) in a ratio of 1:10 and cultured in a growth medium in a suspension culture dish. In addition to examining the morphologies, sizes, and viabilities of the differentiated hGCLCs, this study also analyzed the expression of DAZL and GDF9 proteins within the follicle-like structures. RESULTS After 12 days, the hTSCs began to differentiate into hGCLCs, with their shapes changing from spindle-shaped to spherical. The sizes of hGCLCs increased during the differentiation period (from 25 μm to 50 μm). The survival rate of the hGCLCs after differentiation and in vitro development in primordial follicle-like structures was 54%. Unlike hTSCs, which did not express the DAZL protein, the hGCLCs and follicle-like structures successfully expressed DAZL protein (P-value < 0.05). However, hGCLCs poorly expressed the GDF9 protein. Further, the culture of hGCLCs in primordial follicle-like structures significantly increased GDF9 expression (P-value < 0.05). CONCLUSION In conclusion, our study demonstrated that 3D cultures with ovarian somatic cells in follicle-like structures caused the successful differentiation of reproducible hGCLCs from hTSCs derived from three patients of different ages. Moreover, this method not only enhanced the in vitro development of hGCLCs but also presented a novel approach for co-culturing and developing in vitro oocyte like cells, ultimately leading to the production of artificial follicles.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box, Tehran, 19395- 4644, Iran
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box, Tehran, 19395- 4644, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahnaz Haddadi
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box, Tehran, 19395- 4644, Iran.
| |
Collapse
|
3
|
Dalman A, Adib S, Amorim CA, Pirjani R, Totonchi M, Valojerdi MR. Co-culture of human cryopreserved fragmented ovarian tissue with theca progenitor cells derived from theca stem cells. J Assist Reprod Genet 2023; 40:1611-1622. [PMID: 37079226 PMCID: PMC10352475 DOI: 10.1007/s10815-023-02799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Despite the significant advances in the in vitro development of human primordial follicles, it is still a challenging approach with great potential for improvements. Therefore, the present study aimed to investigate the effect of a feeder layer of human theca progenitor cells (hTPCs) on the development of primordial follicles embedded in human ovarian tissue. METHODS Fragments of frozen-thawed ovarian tissue were activated using the vanadate-derivative dipotassium bisperoxo (5-hydroxy-pyridine-2-carboxylic) oxovanadate (V) and kit ligand for 24 h. Then, the specimens were divided into the co-culture and mono-culture groups and were cultured with and without a hTPC feeder layer for 6 days, respectively. Afterward, the follicles were counted and classified, and the hormone levels and expression levels of apoptosis- and folliculogenesis-related genes were assessed. RESULTS Both culture groups showed significant follicle growth (P < 0.05). However, the co-culture group had a significantly higher number of growing follicles compared to the other group (P < 0.05). Moreover, the expression levels of ZP1, ZP2, ZP3, BMP-7, AMH, and GDF9 were significantly higher in the co-culture group compared to the other group (P < 0.05), while the expression levels of P53 and CASP3 were significantly lower (P < 0.05). Also, the concentrations of estradiol, progesterone, testosterone, and androstenedione were significantly higher in the co-culture group compared to the other group (P < 0.05). CONCLUSION The present study results provided novel evidence on the direct role of hTPCs in the growth and development of human primordial follicles. However, there is a need for future studies to illustrate the underlying mechanisms. Schematic summary of the results. According to our results, the expression of ZP1, ZP2, ZP3, and GDF9 in the oocytes, AMH in the granulosa cells, and BMP4 in the theca cells of the co-culture group were significantly higher than those of the mono-culture and non-culture groups, while the expression of apoptotic genes (BAX, CASP3, and P53) was significantly lower. Moreover, the co-culture group showed significantly increased levels of estradiol, progesterone, testosterone, and androstenedione in its culture media compared to the mono-culture groups.
Collapse
Affiliation(s)
- Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box 19395- 4644, Tehran, Iran.
| | - Samane Adib
- Faculty of Medicine, Department of Anatomical Sciences & Cognitive Neuroscience, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, Bte. B1.55.03, 1200, Bruxelles, Belgique
| | - Reihaneh Pirjani
- Department of Obstetrics and Gynecology, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Street, P.O.Box:14115-111, Tehran, Iran.
| |
Collapse
|
4
|
Vlieghe H, Leonel ECR, Asiabi P, Amorim CA. The characterization and therapeutic applications of ovarian theca cells: An update. Life Sci 2023; 317:121479. [PMID: 36758341 DOI: 10.1016/j.lfs.2023.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Theca cells perform a range of roles during folliculogenesis. So far, little is known about their recruitment process and function since early research has mainly focused on the interactions between granulosa cells and the oocyte, leaving theca cells unfairly forgotten in the understanding of ovarian physiology and pathogenesis. Given that research on theca cells has greatly emerged in recent years, this review of literature aims to discuss the established theoretical concepts with the most recent findings about theca cells' characterization and origins, in vitro culture applications as models for fertility preservation and pharmacological/toxicological studies, its importance in unraveling pathogenic pathways, and stem-cell-based bioengineering for hormonal replacement therapies. Isolation and in vitro culture techniques for theca cells have led to essential advancements in their characterization as a specific cell population. Unraveling the origins of theca cells during the in vivo differentiation process in the adult ovary will assist the development of hormonal replacement therapies, reestablishment of fertility, and treatments for diseases such as premature ovarian insufficiency and polycystic ovarian syndrome, which seem to be directly influenced by theca cells.
Collapse
Affiliation(s)
- Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Ellen C R Leonel
- Departament of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n Câmpus Samambaia, 74001-970 Goiânia, GO, Brazil
| | - Parinaz Asiabi
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
5
|
Chen H, Xia K, Huang W, Li H, Wang C, Ma Y, Chen J, Luo P, Zheng S, Wang J, Wang Y, Dong L, Tan Z, Lai X, Mao FF, Li W, Liang X, Wang T, Xiang AP, Ke Q. Autologous transplantation of thecal stem cells restores ovarian function in nonhuman primates. Cell Discov 2021; 7:75. [PMID: 34462432 PMCID: PMC8405815 DOI: 10.1038/s41421-021-00291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity under the age of 40. Theca cells (TCs) play a vital role during folliculogenesis and TCs dysfunction participate in the pathogenesis of POI. Therefore, transplantation of thecal stem cells (TSCs), which are capable of self-renewal and differentiation into mature TCs, may provide a new strategy for treating POI. To investigate the feasibility, safety, and efficacy of TSCs transplantation in clinically relevant non-human primate (NHP) models, we isolate TSCs from cynomolgus monkeys, and these cells are confirmed to expand continuously and show potential to differentiate into mature TCs. In addition, engraftment of autologous TSCs into POI monkeys significantly improves hormone levels, rescues the follicle development, promotes the quality of oocytes and boosts oocyte maturation/fertilization rate. Taken together, these results for the first time suggest that autologous TSCs can ameliorate POI symptoms in primate models and shed new light on developing stem cell therapy for POI.
Collapse
Affiliation(s)
- Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijian Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhui Chen
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuwei Zheng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Liang
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Asiabi P, Dolmans MM, Ambroise J, Camboni A, Amorim CA. In vitro differentiation of theca cells from ovarian cells isolated from postmenopausal women. Hum Reprod 2021; 35:2793-2807. [PMID: 33326997 DOI: 10.1093/humrep/deaa246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can human theca cells (TCs) be differentiated in vitro? SUMMARY ANSWER It is possible to differentiate human TCs in vitro using a medium supplemented with growth factors and hormones. WHAT IS KNOWN ALREADY There are very few studies on the origin of TCs in mammalian ovaries. Precursor TCs have been described in neonatal mice ovaries, which can differentiate into TCs under the influence of factors from oocytes and granulosa cells (GCs). On the other hand, studies in large animal models have reported that stromal cells (SCs) isolated from the cortical ovarian layer can also differentiate into TCs. STUDY DESIGN, SIZE, DURATION After obtaining informed consent, ovarian biopsies were taken from eight menopausal women (53-74 years of age) undergoing laparoscopic surgery for gynecologic disease not related to the ovaries. SCs were isolated from the ovarian cortex and in vitro cultured for 8 days in basic medium (BM) (G1), enriched with growth factors, FSH and LH in plastic (G2) or collagen substrate without (G3) or with (G4) a GC line. PARTICIPANTS/MATERIALS, SETTING, METHODS To confirm TC differentiation, relative mRNA levels for LH receptor (Lhr), steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), cytochrome P450 17A1 (Cyp17a1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (Hsd3b1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 (Hsd3b2) were assessed. Immunohistochemistry was also performed for their protein detection and a specific marker was identified for TCs (aminopeptidase-N, CD13), as were markers for theca and small luteal cells (dipeptidyl peptidase IV (CD26) and Notch homolog 1, translocation-associated (NOTCH1)). Finally, we analyzed cell ultrastructure before (Day 0) and after in vitro culture (Day 8), and dehydroepiandrosterone (DHEA) and progesterone levels in the medium using transmission electron microscopy (TEM) and ELISA, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Results obtained from qPCR showed a significant increase (P < 0.05) in mRNA levels of Lhr in F2 (floating cells in G2) and G4, Cyp17a1 in G1 and F1 (floating cells in G1) and Hsd3b2 in G1, G2, G3 and G4. Immunohistochemistry confirmed expression of each enzyme involved in the steroidogenic pathway at the protein stage. However, apart from G1, all other groups exhibited a significant (P < 0.05) rise in the number of CD13-positive cells. There was also a significant increase (P < 0.05) in NOTCH1-positive cells in G3 and G4. Ultrastructure analyses by TEM showed a distinct difference between groups and also versus Day 0. A linear trend with time revealed a significant gain (q < 0.001) in DHEA concentrations in the medium during the culture period in G1, G2, G3 and G4. It also demonstrated a statistical increase (q < 0.001) in G2, G3 and G4 groups, but G1 remained the same throughout culture in terms of progesterone levels. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Shorter periods of in vitro culture (e.g. 2, 4 and 6 days) could have led to increased concentrations of differentiated TCs in G2, G3 and G4. In addition, a group of cells cultured in BM and accompanied by COV434 cells would be necessary to understand their role in the differentiation process. Finally, while our results demonstrate that TCs can be differentiated in vitro from cells isolated from the cortical layer of postmenopausal ovaries, we do not know if these cells are differentiated from a subpopulation of precursor TCs present in ovarian cortex or ovarian SCs in general. It is therefore necessary to identify specific markers for precursor TCs in human ovaries to understand the origin of these cells. WIDER IMPLICATIONS OF THE FINDINGS This is a promising step toward understanding TC ontogenesis in the human ovary. Moreover, in vitro-generated human TCs can be used for studies on drug screening, as well as to understand TC-associated pathologies, such as androgen-secreting tumors and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C.A.A. is an FRS-FNRS Research Associate; grant MIS #F4535 16 awarded to C.A.A.; grant 5/4/150/5 awarded to M.M.D.; grant ASP-RE314 awarded to P.A.) and Foundation Against Cancer (grant 2018-042 awarded to A.C.). The authors declare no competing interests.
Collapse
Affiliation(s)
- P Asiabi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - J Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - A Camboni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Hummitzsch K, Hatzirodos N, Macpherson AM, Schwartz J, Rodgers RJ, Irving-Rodgers HF. Transcriptome analyses of ovarian stroma: tunica albuginea, interstitium and theca interna. Reproduction 2020; 157:545-565. [PMID: 30925461 DOI: 10.1530/rep-18-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/29/2019] [Indexed: 01/15/2023]
Abstract
The ovary has specialised stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterise the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6). RNA microarray analysis showed minimal differences between interstitial stroma and pre-theca, and these were combined for some analyses and referred to as stroma. Genes significantly upregulated in theca interna compared to stroma included INSL3, LHCGR, HSD3B1, CYP17A1, ALDH1A1, OGN, POSTN and ASPN. Quantitative RT-PCR showed significantly greater expression of OGN and LGALS1 in interstitial stroma and theca interna versus tunica and greater expression of ACD in tunica compared to theca interna. PLN was significantly higher in interstitial stroma compared to tunica and theca. Ingenuity pathway, network and upstream regulator analyses were undertaken. Cell survival was also upregulated in theca interna. The tunica albuginea was associated with GPCR and cAMP signalling, suggesting tunica contractility. It was also associated with TGF-β signalling and increased fibrous matrix. Western immunoblotting was positive for OGN, LGALS1, ALDH1A1, ACD and PLN with PLN and OGN highly expressed in tunica and interstitial stroma (each n = 6), but not in theca interna from antral follicles (n = 24). Immunohistochemistry localised LGALS1 and POSTN to extracellular matrix and PLN to smooth muscle cells. These results have identified novel differences between the ovarian stromal compartments.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jeff Schwartz
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
8
|
Jiang Y, Zhu D, Liu W, Qin Q, Fang Z, Pan Z. Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness. Stem Cell Res Ther 2019; 10:198. [PMID: 31277696 PMCID: PMC6612207 DOI: 10.1186/s13287-019-1299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Follicle depletion is one of the causes of premature ovarian failure (POF) and primary ovarian insufficiency (POI). Hence, maintenance of a certain number of female germline stem cells (FGSCs) is optimal to produce oocytes and replenish the primordial follicle pool. The mechanism that regulates proliferation or stemness of FGSCs could contribute to restoring ovarian function, but it remains uncharacterized in postnatal mammalian ovaries. This study aims to investigate the mechanism by which inhibiting the activity of the hedgehog (Hh) signaling pathway regulates follicle development and FGSC proliferation. Methods and results To understand the role of the Hh pathway in ovarian aging, we measured Hh signaling activity at different reproductive ages and the correlation between them in physiological and pathological mice. Furthermore, we evaluated the follicle number and development and the changes in FGSC proliferation or stemness after blocking the Hh pathway in vitro and in vivo. In addition, we aimed to explain one of the mechanisms for the FGSC phenotype changes induced by treatment with the Hh pathway-specific inhibitor GANT61 via oxidative stress and apoptosis. The results show that the activity of Hh signaling is decreased in the ovaries in physiological aging and POF models, which is consistent with the trend of expression levels of the germline stem cell markers Mvh and Oct4. In vitro, blocking the Hh pathway causes follicular developmental disorders and depletes ovarian germ cells and FGSCs after treating ovaries with GANT61. The proliferation or stemness of cultured primary FGSCs is reduced when Hh activity is blocked. Our results show that the antioxidative enzyme level and the ratio of Bcl-2/Bax decrease, the expression level of caspase 3 increases, the mitochondrial membrane potential is abnormal, and ROS accumulate in this system. Conclusions We observed that the inhibition of the Hh signaling pathway with GANT61 could reduce primordial follicle number and decrease FGSC reproductive capacity or stemness through oxidative damage and apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-019-1299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Jiang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Dantian Zhu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wenfeng Liu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiushi Qin
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi Fang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China. .,Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
9
|
Dalman A, Totonchi M, Rezazadeh Valojerdi M. Human Ovarian Theca-Derived Multipotent Stem Cells Have The Potential to Differentiate into Oocyte-Like Cells In Vitro. CELL JOURNAL 2018; 20:527-536. [PMID: 30123999 PMCID: PMC6099133 DOI: 10.22074/cellj.2019.5651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/06/2017] [Indexed: 12/03/2022]
Abstract
Objective In this study, we have examined human theca stem cells (hTSCs) in vitro differentiation capacity into human oocyte
like cells (hOLCs).
Materials and Methods In this interventional experiment study, hTSCs were isolated from the theca layer of small antral
follicles (3-5 mm in size). Isolated hTSCs were expanded and cultured in differentiation medium, containing 5% human follicular
fluid, for 50 days. Gene expressions of PRDM1, PRDM14, VASA, DAZL, OCT4, ZP1, 2, 3 GDF9, SCP3 and DMC1 were
evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on days 0, 18, and 25 after monoculture
as well as one week after co-culture with human granulosa cells (hGCs). In addition, GDF9, OCT4, DAZL, VASA, and ZP3
proteins were immune-localized in oocyte-like structures.
Results After 16-18 days, the color of the medium became acidic. After 25 days, the cells started to differentiate into
round-shaped cells (20-25 µm diameter). One week after co-culturing with hGCs, the size of the round cells increased
60 to70 µm and convert to hOLCs. However, these growing cells expressed some primordial germ cell (PGC)- and
germ cell genes (PRDM1, PRDM14, VASA, DAZL, and OCT4) as well as oocyte specific genes (ZP1, 2, 3 and GDF9),
and meiotic-specific markers (SCP3 and DMC1). In addition, GDF9, OCT4, DAZL, VASA, and ZP3 proteins were
present in hOLCs.
Conclusion To sum up, hTSCs have the ability to differentiate into hOLCs. This introduced model paved the way for further
in vitro studies of the exact mechanisms behind germ cell formation and differentiation. However, the functionality of hOLCs
needs further investigation.
Collapse
Affiliation(s)
- Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address: , .,Department of Anatomy, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|