1
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
2
|
Plasil M, Oppelt J, Klumplerova M, Bubenikova J, Vychodilova L, Janova E, Stejskalova K, Futas J, Knoll A, Leblond A, Mihalca AD, Horin P. Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes. HLA 2023; 102:489-500. [PMID: 37106476 DOI: 10.1111/tan.15078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
The major histocompatibility complex (MHC) with its class I and II genes plays a crucial role in the immune response to pathogens by presenting oligopeptide antigens to various immune response effector cells. In order to counteract the vast variability of infectious agents, MHC class I and II genes usually retain high levels of SNPs mainly concentrated in the exons encoding the antigen binding sites. The aim of the study was to reveal new variability of selected MHC genes with a special focus on MHC class I physical haplotypes. Long-range NGS to was used to identify exon 2-exon 3 alleles in three genetically distinct horse breeds. A total of 116 allelic variants were found in the MHC class I genes Eqca-1, Eqca-2, Eqca-7 and Eqca-Ψ, 112 of which were novel. The MHC class II DRA locus was confirmed to comprise five exon 2 alleles, and no new sequences were observed. Additional variability in terms of 15 novel exon 2 alleles was identified in the DQA1 locus. Extensive overall variability across the entire MHC region was confirmed by an analysis of MHC-linked microsatellite loci. Both diversifying and purifying selection were detected within the MHC class I and II loci analyzed.
Collapse
Affiliation(s)
- Martin Plasil
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Oppelt
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Marie Klumplerova
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jana Bubenikova
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Leona Vychodilova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Eva Janova
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Karla Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Futas
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Ales Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czechia
| | - Agnes Leblond
- Clinical Department of Companion, Leisure & Sport Animals, INRAE-VetAgro Sup, Campus vétérinaire de Lyon, Marcy L'Etoile, France
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Petr Horin
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
3
|
Bubenikova J, Vrabelova J, Stejskalova K, Futas J, Plasil M, Cerna P, Oppelt J, Lobova D, Molinkova D, Horin P. Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV). Pathogens 2020; 9:pathogens9110958. [PMID: 33213082 PMCID: PMC7698596 DOI: 10.3390/pathogens9110958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
The Feline coronavirus (FCoV) can cause a fatal disease, the Feline Infectious Peritonitis. Persistent shedders represent the most important source of infection. The role of the host in FCoV fecal shedding is unknown. The objective of this study was to develop gene markers and to test their associations with FCoV shedding patterns. Fecal samples were taken from 57 cats of 12 breeds on the day 0 and after 2, 4 and 12 months. Variation from persistent and/or high-intensity shedding to no shedding was observed. Thirteen immunity-related genes were selected as functional and positional/functional candidates. Positional candidates were selected in a candidate region detected by a GWAS analysis. Tens to hundreds of single nucleotide polymorphisms (SNPs) per gene were identified using next generation sequencing. Associations with different phenotypes were assessed by chi-square and Fisher’s exact tests. SNPs of one functional and one positional candidate (NCR1 and SLX4IP, respectively) and haplotypes of four genes (SNX5, NCR2, SLX4IP, NCR1) were associated with FCoV shedding at pcorected < 0.01. Highly significant associations were observed for extreme phenotypes (persistent/high-intensity shedders and non-shedders) suggesting that there are two major phenotypes associated with different genotypes, highly susceptible cats permanently shedding high amounts of viral particles and resistant non-shedders.
Collapse
Affiliation(s)
- Jana Bubenikova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
| | - Jana Vrabelova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Karla Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Jan Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Petra Cerna
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
| | - Jan Oppelt
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Dana Lobova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Dobromila Molinkova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
- Correspondence:
| |
Collapse
|
4
|
Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, Aguilera-Sepúlveda P, Ferraguti M, Jiménez-Clavero MÁ, Llorente F, Alonso JM, Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound Emerg Dis 2020; 68:1432-1444. [PMID: 32853452 DOI: 10.1111/tbed.13810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne emerging virus in Europe with capacity to cause neurological complications such as encephalitis or meningoencephalitis in humans, birds or equids. In Spain, WNV is actively circulating in mosquitoes, birds and horses in different regions, but never has been deeply studied in Extremadura. Therefore, the aim of this study was to evaluate the seroprevalence of WNV in equids of those areas and to analyse the risk factors associated with exposure to the virus. A total of 199 out of 725 equids presented antibodies against WNV by competition ELISA (27.45%), while 22 were doubtful (3.03%). Anti-WNV IgM antibodies were detected in 16 equids (2.21%), and 3 animals were doubtful (0.41%). All ELISA-reactive positive/doubtful sera (N = 226) were further tested by micro-virus neutralization test (VNT), and a total of 143 horses were confirmed as positive for WNV, obtaining a seroprevalence of 19.72% in equids of western Spain. In addition, specific antibodies against USUV were confirmed in 11 equids. In 24 equids, a specific flavivirus species (detected by ELISA test) could not be determined. The generalized linear mixed-effects models showed that the significant risk factors associated with individual WNV infection in equids were the age (adults) and hair coat colour (light), whereas in USUV infections, it was the breed (pure). Data demonstrated that WNV and USUV are circulating in regions of western Spain. Given the high WNV seroprevalence found in equids from the studied areas, it is important to improve the surveillance programmes of public health to detect undiagnosed human cases and to establish a vaccination programme in equid herds in these regions.
Collapse
Affiliation(s)
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - María Martín-Cuervo
- Animal Medicine Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Martina Ferraguti
- Anatomy, Cellular Biology and Zoology Department, Science Faculty, University of Extremadura (UEx), Badajoz, Spain
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Juan Manuel Alonso
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| |
Collapse
|
5
|
Tallmadge RL, Antczak DF, Felippe MJB. Genetics of Immune Disease in the Horse. Vet Clin North Am Equine Pract 2020; 36:273-288. [PMID: 32654783 DOI: 10.1016/j.cveq.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Host defenses against infection by viruses, bacteria, fungi, and parasites are critical to survival. It has been estimated that upwards of 7% of the coding genes of mammals function in immunity and inflammation. This high level of genomic investment in defense has resulted in an immune system characterized by extraordinary complexity and many levels of redundancy. Because so many genes are involved with immunity, there are many opportunities for mutations to arise that have negative effects. However, redundancy in the mammalian defense system and the adaptive nature of key immune mechanisms buffer the untoward outcomes of many such deleterious mutations.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Road, Ithaca, NY 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY 14853, USA.
| | - Maria Julia Bevilaqua Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Franco-Martínez L, Martínez-Subiela S, Cerón JJ, Tecles F, Eckersall PD, Oravcova K, Tvarijonaviciute A. Biomarkers of health and welfare: A One Health perspective from the laboratory side. Res Vet Sci 2019; 128:299-307. [PMID: 31869596 DOI: 10.1016/j.rvsc.2019.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
A biomarker is any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical, or biological. The One World, One Health concept established that human and animal health and the environmental state are highly interconnected, sharing common aspects that can be applied globally in these three components. In this paper, we review how the concept of One Health can be applied to biomarkers of health and welfare, with a special focus on five points that can be applied to any biomarker when it is expected to be used to evaluate the human, animal or environmental health. Three of these points are: (1) the different biomarkers that can be used, (2) the different sample types where the biomarkers can be analysed, and (3) the main methods that can be used for their measurement. In addition, we will evaluate two key points needed for adequate use of a biomarker in any situation: (4) a proper analytical validation in the sample that it is going to be used, and (5) a correct selection of the biomarker. It is expected that this knowledge will help to have a broader idea about the use of biomarkers of health and welfare and also will contribute to a better and more accurate use of these biomarkers having in mind their One Health perspective.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| | - Peter David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK.
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK.
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
7
|
Stejskalova K, Janova E, Horecky C, Horecka E, Vaclavek P, Hubalek Z, Relling K, Cvanova M, D'Amico G, Mihalca AD, Modry D, Knoll A, Horin P. Associations between the presence of specific antibodies to the West Nile Virus infection and candidate genes in Romanian horses from the Danube delta. Mol Biol Rep 2019; 46:4453-4461. [PMID: 31175514 DOI: 10.1007/s11033-019-04900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023]
Abstract
The West Nile virus (WNV) is a mosquito-borne flavivirus causing meningoencephalitis in humans and animals. Due to their particular susceptibility to WNV infection, horses serve as a sentinel species. In a population of Romanian semi-feral horses living in the Danube delta region, we have analyzed the distribution of candidate polymorphic genetic markers between anti WNV-IgG seropositive and seronegative horses. Thirty-six SNPs located in 28 immunity-related genes and 26 microsatellites located in the MHC and LY49 complex genomic regions were genotyped in 57 seropositive and 32 seronegative horses. The most significant association (pcorr < 0.0002) was found for genotypes composed of markers of the SLC11A1 and TLR4 genes. Markers of five other candidate genes (ADAM17, CXCR3, IL12A, MAVS, TNFA), along with 5 MHC class I and LY49-linked microsatellites were also associated with the WNV antibody status in this model horse population. The OAS1 gene, previously associated with WNV-induced clinical disease, was not associated with the presence of anti-WNV antibodies.
Collapse
Affiliation(s)
- K Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242, Brno, Czech Republic
| | - E Janova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242, Brno, Czech Republic.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242, Brno, Czech Republic
| | - C Horecky
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic.,CEITEC-MENDELU, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic
| | - E Horecka
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic.,CEITEC-MENDELU, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic
| | - P Vaclavek
- SVU Jihlava, Rantirovska 93/20, Horni Kosov, 58601, Jihlava, Czech Republic
| | - Z Hubalek
- Institute of Vertebrate Biology of the Academy of Sciences, Květná 8, 60365, Brno, Czech Republic
| | - K Relling
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1, 612 42, Brno, Czech Republic
| | - M Cvanova
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - G D'Amico
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400362, Cluj-Napoca, Romania
| | - A D Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400362, Cluj-Napoca, Romania
| | - D Modry
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242, Brno, Czech Republic.,Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1, 612 42, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - A Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic.,CEITEC-MENDELU, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic
| | - P Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242, Brno, Czech Republic. .,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242, Brno, Czech Republic.
| |
Collapse
|