Xu H, Zhang D, Weng X, Wang D, Cai D. Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline.
Mikrochim Acta 2022;
189:201. [PMID:
35474041 DOI:
10.1007/s00604-022-05304-7]
[Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
A promising sensing platform was constructed based on an electrochemically reduced graphene oxide (ErGO)/copper metal-organic framework (Cu-MOF)/platinum nanoparticles (ErGO/Cu-MOF/PtNPs) modified glassy carbon electrode for the detection of tetracycline. The ErGO/Cu-MOF/PtNPs composite electrode possessed an excellent electrochemical performance to tetracycline detection mainly due to the synergistic effect of ErGO, Cu-MOF and PtNPs. The electrochemical kinetics and catalytical mechanism of tetracycline were systematically studied, showing that tetracycline's electrocatalytic oxidation reaction was an absorption-controlled two-step process involving two electrons and one proton transfer, respectively. Low concentration of tetracycline was detected by amperometry with the a linear range of 1 ~ 200 μM (R2 = 0.9900) and a detection limit of 0.03 μM (S/R = 3). The proposed sensor was successfully applied to the detection of tetracycline in the real water samples with recoveries of 93.5% ~ 106%, and relative standard deviations (RSD) of 4.65% ~ 5.21% (n = 3). Furthermore, acceptable stability, repeatability and reproducibility were verified for continuous determination of tetracycline under optimized conditions. The ErGO/Cu-MOF/PtNPs composite electrode also demonstrated better anti-interference performance compared to other types of antibiotics than that of similar structural tetracyclines. Therefore, the proposed ErGO/Cu-MOF/PtNPs composites might provide a potential sensing platform for detecting analogous tetracyclines or total tetracyclines in the environment.
Collapse