1
|
Darwish IA, Darwish HW, Alsalhi MS. A One-Step Green Microwell Spectrophotometric Assay for the Determination of Certain New Chemotherapeutic Drug Formulations. J AOAC Int 2024; 107:903-911. [PMID: 38941505 DOI: 10.1093/jaoacint/qsae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The formation of charge-transfer complexes (CTCs) of iodine with five chemotherapeutic drugs used for the treatment of different types of cancer has not been investigated. These drugs are olaparib, seliciclib, vandetanib, dasatinib, and tozasertib. Additionally, these drugs need an appropriate general spectrophotometric assay for their analysis in the dosage forms regardless of the differences in their chemical structures. OBJECTIVE The aim of this study was the development of a novel microwell spectrophotometric assay (MW-SPA) for one-step determination of these drugs via their interactions with iodine, which resulted in instantaneous production of bright lemon-yellow CTCs. METHODS A spectrophotometric study of the CTCs was conducted, and all CTCs were characterized. Site(s) of interaction on each drug were assigned, and the MW-SPA was developed and applied to the analysis of dosage forms. RESULTS The findings confirmed that the reactions proceeded via CTC formation. Beer's law was obeyed over a general concentration range of 1-6 µg/mL. The LODs and LOQs were in the ranges of 0.5-2.1 and 1.5-6.4 µg/mL, respectively. The proposed MW-SPA demonstrated excellent precisions as the relative standard deviations were < 2.24 and 2.23% for the intra- and inter-assay precision, respectively. Recovery studies demonstrated the accuracy of MW-SPA. Successful determination of all drugs in bulk and tablet forms was achieved using the MW-SPA. The environmental sustainability of the proposed methodology was determined, providing evidence of the assay's alignment with the basis of green analytical chemistry. The high throughput of the assay was documented. CONCLUSION In contrast to other existing methods, the MW-SPA described herein was valid for analyzing all drugs at the same wavelength. HIGHLIGHTS The assay is useful for routine analysis of drugs in their formulations in QC laboratories.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh11451, Saudi Arabia
| | - Mohammed S Alsalhi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh11451, Saudi Arabia
| |
Collapse
|
2
|
Ciuca MD, Racovita RC. Development of Visible Spectrophotometric Methods for the Determination of Tricyclic Antidepressants Based on Formation of Molecular Complexes with p-Benzoquinones. Int J Mol Sci 2023; 24:16744. [PMID: 38069067 PMCID: PMC10706237 DOI: 10.3390/ijms242316744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tricyclic antidepressants are commonly employed in the management of major depressive disorders. The present work describes two visible (VIS) spectrophotometric techniques that utilize the formation of charge transfer complexes between four antidepressant compounds, namely, amitriptyline hydrochloride (AMI), imipramine hydrochloride (IMI), clomipramine hydrochloride (CLO), and trimipramine maleate (TRI) acting as electron donors and two p-benzoquinones, namely, p-chloranilic acid (pCA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), serving as electron acceptors. The stoichiometry of the compounds produced exhibited a consistent 1:1 ratio in all instances, as established by Job's method. Molar absorptivities, equilibrium association constants, and several other spectroscopic properties were determined for all complexes. The developed spectrophotometric techniques were validated intra-laboratory and successfully applied for quantitative assessment of the four antidepressant active ingredients in several commercial pharmaceutical formulations. The methods are relatively simple, fast, and use readily available laboratory instrumentation, making them easily applicable by most quality control laboratories worldwide.
Collapse
Affiliation(s)
| | - Radu C. Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania;
| |
Collapse
|
3
|
Darwish HW, Darwish IA, Ali AM, Almutairi HS. Charge Transfer Complex of Lorlatinib with Chloranilic Acid: Characterization and Application to the Development of a Novel 96-Microwell Spectrophotometric Assay with High Throughput. Molecules 2023; 28:molecules28093852. [PMID: 37175262 PMCID: PMC10179897 DOI: 10.3390/molecules28093852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Lorlatinib (LRL) is the first drug of the third generation of anaplastic lymphoma kinase (ALK) inhibitors used a first-line treatment of non-small cell lung cancer (NSCLC). This study describes, for the first time, the investigations for the formation of a charge transfer complex (CTC) between LRL, as electron donor, with chloranilic acid (CLA), as a π-electron acceptor. The CTC was characterized by ultraviolet (UV)-visible spectrophotometry and computational calculations. The UV-visible spectrophotometry ascertained the formation of the CTC in methanol via formation of a new broad absorption band with maximum absorption peak (λmax) at 530 nm. The molar absorptivity (ε) of the complex was 0.55 × 103 L mol-1 cm-1 and its band gap energy was 2.3465 eV. The stoichiometric ratio of LRL/CLA was found to be 1:2. The association constant of the complex was 0.40 × 103 L mol-1, and its standard free energy was -0.15 × 102 J mole-1. The computational calculation for the atomic charges of an energy minimized LRL molecule was conducted, the sites of interaction on the LRL molecule were assigned, and the mechanism of the reaction was postulated. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric method (MW-SPA) for LRL. The assay limits of detection and quantitation were 2.1 and 6.5 µg/well, respectively. The assay was validated, and all validation parameters were acceptable. The assay was implemented successfully with great precision and accuracy to the determination of LRL in its bulk form and pharmaceutical formulation (tablets). This assay is simple, economic, and more importantly has a high-throughput property. Therefore, the assay can be valuable for routine in quality control laboratories for analysis of LRL's bulk form and pharmaceutical tablets.
Collapse
Affiliation(s)
- Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Awadh M Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Halah S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Darwish IA, Darwish HW, Ali AM, Almutairi HS. Spectrophotometric Investigations of Charge Transfer Complexes of Tyrosine Kinase Inhibitors with Iodine as a σ-Electron Acceptor: Application to Development of Universal High-Throughput Microwell Assay for Their Determination in Pharmaceutical Formulations. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040775. [PMID: 37109733 PMCID: PMC10143458 DOI: 10.3390/medicina59040775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Background and Objective: Tyrosine kinase inhibitors (TKIs) are used for the treatment of different types of cancers. The current study describes, for the first time, the ultraviolet-visible spectrophotometric investigation of charge transfer complexes (CTCs) of seven TKIs, as electron donors, and iodine, as σ-electron. Materials and Methods: The formation of CTCs was promoted in dichloromethane, among the other solvents used in the investigation. The molar absorptivity values, association constants, and free energy changes of the CTCs were determined. Stoichiometric ratio of TKI: iodine as well as TKIs site(s) of interaction were addressed. Reaction was the basis for constructing a novel simple and accurate 96-microwell spectrophotometric assay (MW-SPA) with high-throughput property for the quantitative determination of TKIs in their pharmaceutical formulations. Results: Beer's law, which relates CTC absorbances to TKI concentrations, was followed within the optimal range of 2 to 100 µg/well (r ranged from 0.9991 to 0.9998). Detection and quantification limits ranged from 0.91 to 3.60 and 2.76 to 10.92 g µmL-1, respectively. Relative standard deviations values for the intra- and inter-assay precisions of the proposed MW-SPA did not exceed 2.13 and 2.34%, respectively. Studies of recovery demonstrated MW-SPA accuracy, with results ranging from 98.9% to 102.4%. All TKIs, both in bulk form and in pharmaceutical formulations (tablets), were effectively determined using the suggested MW-SPA. Conclusions: The current MW-SPA involved a simple procedure and it was convenient as it could analyse all proposed TKIs utilizing a single assay system at once measuring wavelengths for all TKIs. In addition, the proposed MW-SPA has high throughput which enables the processing of a batch of huge samples' number in very short reasonable time period. In conclusion, TKIs can be routinely analysed in their dosage forms in quality control laboratories, and the assay can be highly valuable and helpful in this regard.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Awadh M Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Halah S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Al-Hossaini AM, Darwish IA, Darwish HW. Novel High-Throughput Microwell Spectrophotometric Assay for One-Step Determination of Lorlatinib, a Novel Potent Drug for the Treatment of Anaplastic Lymphoma Kinase (ALK)-Positive Non-Small Cell Lung Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040756. [PMID: 37109714 PMCID: PMC10143429 DOI: 10.3390/medicina59040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: Lorlatinib (LOR) belongs to the third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors. People who are diagnosed with ALK-positive metastatic and advanced non-small cell lung cancer (NSCLC) are eligible to get it as a first-line treatment option after it was given the approval by "the Food and Drug Administration (FDA)". However, no study has described constructing high-throughput analytical methodology for LOR quantitation in dosage form. For the first time, this work details the construction of a high-throughput, innovative microwell spectrophotometric assay (MW-SPA) for single-step assessment of LOR in its tablet form, for use in pharmaceutical quality control. Materials and Methods: Assay depended on charge transfer complex (CTC) formation between LOR, as electron donor, with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone (DDQ), as π-electron acceptor. Reaction conditions were adjusted, the CTC was characterized by ultraviolet (UV)-visible spectrophotometry and computational molecular modeling, and its electronic constants were determined. Site of interaction on LOR molecule was allocated and reaction mechanism was suggested. Under refined optimum reaction conditions, the procedures of MW-SPA were performed in 96-well assay plates, and the responses were recorded by an absorbance plate reader. Validation of the current methodology was performed in accordance with guidelines of "the International Council on Harmonization (ICH)", and all validation parameters were acceptable. Results: Limits of detection and quantitation of MW-SPA were 1.8 and 5.5 µg/well, respectively. The assay was applied with great success for determining LOR in its tablets. Conclusions: This The assay is straightforward, economic and has high-throughput characteristics. Consequently, the assay is recommended as a valuable analytical approach in quality control laboratories for LOR's tablets' analysis.
Collapse
Affiliation(s)
- Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Bakheit AH, Al-Salahi R, Al-Majed AA. Thermodynamic and Computational (DFT) Study of Non-Covalent Interaction Mechanisms of Charge Transfer Complex of Linagliptin with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and Chloranilic acid (CHA). Molecules 2022; 27:molecules27196320. [PMID: 36234857 PMCID: PMC9572772 DOI: 10.3390/molecules27196320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
This study describes the non-covalent interactions of the charge transfer complex (CT), which was responsible for the synthesis of Linagliptin (LNG) with 2,3-Dichloro-5,6-Dicyano-1,4-benzoquinone (DDQ), or with Chloranilic acid (CHA) complexes in acetonitrile (MeCN) at temperatures of (25 ± 2 °C). Then, a UV–Vis spectrophotometer was utilized to identify Linagliptin (LNG) from these complexes. For the quantitative measurement of Linagliptin in bulk form, UV–Vis techniques have been developed and validated in accordance with ICH criteria for several aspects, including selectivity, linearity, accuracy, precision, LOD, LOQ, and robustness. The optimization of the complex synthesis was based on solvent polarization; the ratio of molecules in complexes; the association constant; and Gibbs energy (ΔG°). The experimental work is supported by the computational investigation of the complexes utilizing density functional theory as well as (QTAIM); (NCI) index; and (RDG). According to the optimized conditions, Beer’s law was observed between 2.5–100 and 5–100 µM with correlation coefficients of 1.9997 and 1.9998 for LGN-DDQ and LGN-CHA complexes, respectively. For LGN-DDQ and LGN-CHA complexes, the LOD and LOQ were (1.0844 and 1.4406 μM) and (3.2861 and 4.3655 μM), respectively. The approach was successfully used to measure LGN in its bulk form with high precision and accuracy.
Collapse
|
7
|
Darwish IA, Khalil NY, Darwish HW, Alzoman NZ, Al-Hossaini AM. Synthesis, spectroscopic and computational characterization of charge transfer complex of remdesivir with chloranilic acid: Application to development of novel 96-microwell spectrophotometric assay. J Mol Struct 2022; 1263:133104. [PMID: 35465174 PMCID: PMC9013485 DOI: 10.1016/j.molstruc.2022.133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Remdesivir (REM) is an adenosine triphosphate analog antiviral drug that has received authorization from European Commission and approval from the U.S. Food and Drug Administration for treatment of coronavirus disease 2019 (Covid-19). This study, describes, for the first time, the synthesis of a novel charge transfer complex (CTC) between REM, as electron donor, with chloranilic acid (CLA), as π electron acceptor. The CTC was characterized using different spectroscopic and thermogravimetric techniques. UV-visible spectroscopy ascertained the formation of the CTC in methanol via formation of a new broad absorption band with maximum absorption peak (λmax) at 530 nm. The molar absorptivity (ε) of the complex was 3.33 × 103 L mol-1 cm-1 and its band gap energy was 1.91 eV. The stoichiometric ratio of REM:CLA was found to be 1:1. The association constant of the complex was 1.11 × 109 L mol-1, and its standard free energy was 5.16 × 104 J mole-1. Computational calculation for atomic charges of energy minimized REM was conducted, the site of interaction on REM molecule was assigned and the mechanism of the reaction was postulated. The solid-state CTC was further characterized by FT-IR and 1H NMR spectroscopic techniques. Both FT-IR and 1H NMR confirmed the formation of the CTC and its structure. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric method (MW-SPA) for REM. The assay limits of detection and quantitation were 3.57 and 10.83 µg/well, respectively. The assay was validated, and all validation parameters were acceptable. The assay was implemented successfully with great precision and accuracy to the determination of REM in its bulk form and pharmaceutical formulation (injection). This assay is simple, economic, and more importantly, has high throughput property. Therefore, the assay can be valuable for routine in quality control laboratories for analysis of REM's bulk form and pharmaceutical injection.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Al-Hazmi GH, Hassanien A, Atta A, Refat MS, Saad HA, Shakya S, Adam AMA. Supramolecular charge-transfer complex generated by the interaction between tin(II) 2,3-naphtalocyanine as a donor with DDQ as an acceptor: Spectroscopic studies in solution state and theoretical calculations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Adam AMA, Saad HA, Refat MS, Hegab MS, Al-Hazmi GH, Mohammed Alsuhaibani A, Mohamed H. The derivation and characterization of quinine charge-transfer complexes with inorganic and organic acceptors in liquid and solid form. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Darwish IA, Almehizia AA, Sayed AY, Khalil NY, Alzoman NZ, Darwish HW. Synthesis, spectroscopic and computational studies on hydrogen bonded charge transfer complex of duvelisib with chloranilic acid: Application to development of novel 96-microwell spectrophotometric assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120287. [PMID: 34455386 DOI: 10.1016/j.saa.2021.120287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Duvelisib (DUV) is a is a small-molecule with inhibitory action for phosphoinositide 3-kinase (PI3K). It has been recently approved for the effective treatment of chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). Novel charge transfer complex (CTC) between DUV, as electron donor, with chloranilic acid (CLA), as π electron acceptor has been synthesized and characterized using different spectroscopic and thermogravimetric techniques. UV-visible spectroscopy ascertained the formation of the CTC in different solvents of varying polarity indexes and dielectric constants via formation of new broad absorption band with maximum absorption peak (λmax) in the range of 488-532 nm. The molar absorptivity of the CTC was dependent on the polarity index and dielectric constant of the solvent; the correlation coefficients were 0.9955 and 0.9749, respectively. The stoichiometric ratio of DUV:CLA was 1:1. Electronic spectral analysis was conducted for characterization of the complex in terms of its electronic constants. Computational calculation for atomic charges of energy minimized DUV was conducted and the site of interaction on DUV molecule was assigned. The solid-state CTC of DUV:CLA (1:1) was synthesized, and its structure was characterized by UV-visible, mass, FT-IR, and 1H NMR spectroscopic techniques. Both FT-IR and 1H NMR confirmed that both CT and hydrogen bonding contributed to the molecular composition of the complex. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric assay (MW-SPA) for DUV. The assay limits of detection and quantitation were 0.57 and 1.72 µg/well, respectively. The assay was validated and all validation parameters were acceptable. The method was implemented successfully with great precision and accuracy to the analysis of the DUV in its bulk and capsules.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Y Sayed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| |
Collapse
|
11
|
Khalil A, Kashif M. Development of UV-visible spectrophotometric methods for the quantitative and in silico studies for cilazapril optimized by response surface methodology. Drug Dev Ind Pharm 2021; 47:1100-1111. [PMID: 34286656 DOI: 10.1080/03639045.2021.1957918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
For cilazapril (CLZ), analytical methods based on donor-acceptor phenomenon that are simple, rapid with broad linear dynamic range for the quantification of drug are not available in the literature. Considering the requirement for the methods, in this study, two economic, potent analytical methods based on the complexation of CLZ with π-acceptors, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (CA) were developed, validated, and studied spectrophotometrically. Various analytical data were discussed. The effects of experimental variables were optimized from the results of in silico technique, i.e. Box-Behnken design under response surface methodology. Linear dynamic range was significantly good in the range of 6-60 µg mL-1 and 20-260 µg mL-1 for DDQ and CA methods. Moreover, molecular docking studies corroborated the experimental results. Further, the methods were supplemented by the pharmaceutical and biological application for the quantitative assay of CLZ. Collectively, the results of the reported method of the analysis suggest that the developed approach is simple, sensitive, accurate and precise.
Collapse
Affiliation(s)
- Adila Khalil
- Department of Chemistry, Analytical Chemistry Section, Aligarh Muslim University, Aligarh, India
| | - Mohammad Kashif
- Department of Chemistry, Analytical Chemistry Section, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
12
|
Adam AMA, Altalhi TA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Correlations between spectroscopic data for charge-transfer complexes of two artificial sweeteners, aspartame and neotame, generated with several π-acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Exploring the charge-transfer chemistry of fluorine-containing pyrazolin-5-ones: The complexation of 1-methyl-3-trifluoromethyl-2-pyrazoline-5-one with five π-acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Darwish IA, Khalil NY, Darwish HW, Alzoman NZ, Al-Hossaini AM. Spectrophotometric and computational investigations of charge transfer complexes of chloranilic acid with tyrosine kinase inhibitors and application to development of novel universal 96-microwell assay for their determination in pharmaceutical formulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119482. [PMID: 33571740 DOI: 10.1016/j.saa.2021.119482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The tyrosine kinase inhibitors (TKIs) are chemotherapeutic drugs used for targeted therapy of various types of cancer. In literature, there is no existing universal chromogenic reagent used for development of spectrophotometric assay for all TKIs regardless the diversity of their chemical structures. This work discusses, for the first time, the experimental and computational evaluation of chloranilic acid (CLA) as a universal chromogenic reagent for developing a novel 96-microwell spectrophotometric assay (MW-SPA) for TKIs. The reaction of CLA with seven TKIs was examined in different organic solvents of various dielectric constants and polarity indexes. The reaction resulted in an instantaneous formation of intensely purple coloured products with all the investigated TKIs. Spectrophotometric investigations confirmed that the reactions proceeded via the formation of charge-transfer complexes (CTC). The physical parameters (molar absorptivity, molar ratio, association constant and standard free energy) were determined for the CTC of all TKIs. Computational calculations for the relative electron densities on each atom of the TKI molecule and molecular modelling for the CTC were conducted, and the site(s) of interaction on each TKI molecule were determined. Under the optimized conditions, Beer's law correlating the absorbances of the CTC with the concentrations of TKIs were obeyed in the range of 5-500 µg/well with good correlation coefficients (0.9991-0.9998). The limits of detection and quantitation were in the ranges of 1.89-5.09 and 5.74-15.42 µg/well, respectively. The proposed MW-SPA showed high precisions as the values of the relative standard deviations did not exceed 2.01 and 2.45% for the intra- and inter-assay precision, respectively. The accuracy of MW-SPA was proved by recovery studies as the recovery values were in the range of 98.8-103.7%. The proposed MW-SPA was successfully applied for the determination of all TKIs in their bulk forms and pharmaceutical formulations (tablets) with good accuracy and precisions. The proposed MW-SPA is the first assay that can analyse all the TKIs on a single assay system without modifications in the detection wavelength. Additional advantages of the proposed MW-SPA are simple, economic, and more importantly have high throughput. Therefore, the assay can be helpful and beneficial for routine analysis of TKIs in their pharmaceutical formulations in quality control laboratories.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Lin Y, Sun J, Tang M, Zhang G, Yu L, Zhao X, Ai R, Yu H, Shao B, He Y. Synergistic Recognition-Triggered Charge Transfer Enables Rapid Visual Colorimetric Detection of Fentanyl. Anal Chem 2021; 93:6544-6550. [PMID: 33855847 DOI: 10.1021/acs.analchem.1c00723] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a new psychoactive substance, abuse of fentanyl (FTN) is currently spreading around the world, resulting in an urgent need of on-site and rapid analytical methods for detection of FTN. Here, we present a synergistic recognition strategy for rapid, cost-effective, selective, sensitive, and visual colorimetric detection of FTN by taking advantage of Rose Bengal (RB) as the specific probe. This assay is based on the halogen- and hydrogen-bonding interactions between them, generating a charge transfer and accompanying a red shift in the RB absorption band as well as color change from red to purple. The utility of the present visual colorimetric assay is demonstrated in aqueous solution, diluted urine, and domestic sewage samples. A detection limit of 0.7 mg·L-1 in aqueous solution is achieved, and the naked-eye detection of FTN is also realized in different real matrices within 6 min. Moreover, this method is insusceptible to interference from various substances (other opioids, cutting agents of street drugs, FTN precursors, amino acids, and small-molecular amines). Additionally, we successfully fabricate a smartphone-based portable device to determine FTN, which is appropriate for field tests. The present work not only provides the first visual assay for FTN but also reveals the molecular structure-property relationship, which will guide the design and development of various probes for recognizing FTN.
Collapse
Affiliation(s)
- Ying Lin
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, P. R. China
| | - Mei Tang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Guihua Zhang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Ling Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xiaobing Zhao
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Rui Ai
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Haili Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, P. R. China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
16
|
Darwish IA, Khalil NY, Alsaif NA, Herqash RN, Sayed AYA, Abdel-Rahman HM. Charge-Transfer Complex of Linifanib with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone: Synthesis, Spectroscopic Characterization, Computational Molecular Modelling and Application in the Development of Novel 96-microwell Spectrophotometric Assay. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1167-1180. [PMID: 33737805 PMCID: PMC7966300 DOI: 10.2147/dddt.s296502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Background Linifanib (LFB) is a multi-targeted receptor tyrosine kinase inhibitor used in the treatment of hepatocellular carcinoma and other types of cancer. The charge-transfer (CT) interaction of LFB is important in studying its receptor binding mechanisms and useful in the development of a reliable CT-based spectrophotometric assay for LFB in its pharmaceutical formulation to assure its therapeutic benefits. Purpose The aim of this study was to investigate the CT reaction of LFB with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone (DDQ) and its application in the development of a novel 96-microwell spectrophotometric assay for LFB. Methods The reaction was investigated, its conditions were optimized, the physicochemical and constants of the CT complex and stoichiometric ratio of the complex were determined. The solid-state LFB-DDQ complex was synthesized and its structure was analyzed by UV-visible, FT-IR, and 1H-NMR spectroscopic techniques, and also by the computational molecular modeling. The reaction was employed in the development of a novel 96-microwell spectrophotometric assay for LFB. Results The reaction resulted in the formation of a red-colored product, and the spectrophotometric investigations confirmed that the reaction had a CT nature. The molar absorptivity of the complex was linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9526 and 0.9459, respectively. The stoichiometric ratio of LFB:DDQ was 1:2. The spectroscopic and computational data confirmed the sites of interaction on the LFB molecule, and accordingly, the reaction mechanism was postulated. The reaction was utilized in the development of the first 96-microwell spectrophotometric assay for LFB. The assay limits of detection and quantitation were 1.31 and 3.96 μg/well, respectively. The assay was successfully applied to the analysis of LFB in its bulk and tablets with high accuracy and precision. Conclusion The assay is simple, rapid, accurate, eco-friendly as it consumes low volumes of organic solvent, and has high analysis throughput.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rashed N Herqash
- Medicinal Aromatic and Poisonous Plant Research Centre, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Y A Sayed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hamdy M Abdel-Rahman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Medicinal Chemistry, College of Pharmacy, Nahda University, Banisuef, Egypt
| |
Collapse
|
17
|
Mercy JSI, Maruthupandi M, Mamat MHB, Vasimalai N. Facile In-Situ Synthesis of Biopolymer Capped Nano Sized Silver Particles: Smartphone Aided Paper-Based Selective Detection of CYS and TC Drugs in Biological and Drug Samples. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02035-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Adam AMA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part II: Complexation with several π-acceptors (PA, CLA, CHL). J Mol Liq 2021; 325:115121. [PMID: 33518854 PMCID: PMC7837197 DOI: 10.1016/j.molliq.2020.115121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
Finding a vaccine or cure for the coronavirus disease (COVID-19) responsible for the worldwide pandemic and its economic, medical, and psychological burdens is one of the most pressing issues presently facing the global community. One of the current treatment protocols involves the antibiotic azithromycin (AZM) alone or in combination with other compounds. Obtaining additional insight into the charge-transfer (CT) chemistry of this antibiotic could help researchers and clinicians to improve such treatment protocols. Toward this aim, we investigated the CT interactions between AZM and three π-acceptors: picric acid (PA), chloranilic acid (CLA), and chloranil (CHL) in MeOH solvent. AZM formed colored products at a 1:1 stoichiometry with the acceptors through intermolecular hydrogen bonding. An n → π* interaction was also proposed for the AZM-CHL CT product. The synthesized CT products had markedly different morphologies from the free reactants, exhibiting a semi-crystalline structure composed of spherical particles with diameters ranging from 50 to 90 nm.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah M Alsuhaibani
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, 4545 - King Khalid Airport Unit No. 1, Riyadh 13415-7132, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
19
|
Adam AMA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part I: Complexation with iodine in different solvents. J Mol Liq 2021; 325:115187. [PMID: 33390633 PMCID: PMC7764390 DOI: 10.1016/j.molliq.2020.115187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Around the world, the antibiotic azithromycin (AZM) is currently being used to treat the coronavirus disease (COVID-19) in conjunction with hydroxychloroquine or chloroquine. Investigating the chemical and physical properties of compounds used alone or in combination to combat the COVID-19 pandemic is of vital and pressing importance. The purpose of this study was to characterize the charge transfer (CT) complexation of AZM with iodine in four different solvents: CH2Cl2, CHCl3, CCl4, and C6H5Cl. AZM reacted with iodine at a 1:1 M ratio (AZM to I2) in the CHCl3 solvent and a 1:2 M ratio in the other three solvents, as evidenced by data obtained from an elemental analysis of the solid CT products and spectrophotometric titration and Job's continuous variation method for the soluble CT products. Data obtained from UV-visible and Raman spectroscopies indicated that AZM strongly interacted with iodine in the CH2Cl2, CCl4, and C6H5Cl solvents by a physically potent n→σ* interaction to produce a tri-iodide complex formulated as [AZM·I+]I3 -. XRD and TEM analyses revealed that, in all solvents, the AZM-I2 complex possessed an amorphous structure composed of spherical particles ranging from 80 to 110 nm that tended to aggregate into clusters. The findings described in the present study will hopefully contribute to optimizing the treatment protocols for COVID-19.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah M Alsuhaibani
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, 4545 - King Khalid Airport Unit No. 1, Riyadh 13415-7132, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
20
|
Darwish IA, Darwish HW, Khalil NY, Sayed AYA. Experimental and Computational Evaluation of Chloranilic Acid as an Universal Chromogenic Reagent for the Development of a Novel 96-Microwell Spectrophotometric Assay for Tyrosine Kinase Inhibitors. Molecules 2021; 26:744. [PMID: 33572664 PMCID: PMC7866968 DOI: 10.3390/molecules26030744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
The tyrosine kinase inhibitors (TKIs) are chemotherapeutic drugs used for the targeted therapy of various types of cancer. This work discusses the experimental and computational evaluation of chloranilic acid (CLA) as a universal chromogenic reagent for developing a novel 96-microwell spectrophotometric assay (MW-SPA) for TKIs. The reaction resulted in an instantaneous formation of intensely purple colored products with TKIs. Spectrophotometric results confirmed that the reactions proceeded via the formation of charge-transfer complexes (CTCs). The physical parameters were determined for the CTCs of all TKIs. Computational calculations and molecular modelling for the CTCs were conducted, and the site(s) of interaction on each TKI molecule were determined. Under the optimized conditions, Beer's law correlating the absorbances of the CTCs with the concentrations of TKIs were obeyed in the range of 10-500 µg/well with good correlation coefficients (0.9993-0.9998). The proposed MW-SPA fully validated and successfully applied for the determination of all TKIs in their bulk forms and pharmaceutical formulations (tablets). The proposed MW-SPA is the first assay that can analyze all the TKIs on a single assay system without modifications in the detection wavelength. The advantages of the proposed MW-SPA are simple, economic and, more importantly, have high throughput.
Collapse
Affiliation(s)
- Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.W.D.); (N.Y.K.); (A.Y.A.S.)
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.W.D.); (N.Y.K.); (A.Y.A.S.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Nasr Y. Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.W.D.); (N.Y.K.); (A.Y.A.S.)
| | - Ahmed Y. A. Sayed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.W.D.); (N.Y.K.); (A.Y.A.S.)
| |
Collapse
|
21
|
Mohamed SH, Issa YM, Elfeky SA, Ahmed AA, Abdelkader NS. Spectroscopic, thermogravimetric studies and DFT calculations of pentoxyverine citrate ion-pairs with sulfonephthalein dyes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Madrahimov S, Mostafa A, Yempally V, Fadlallah J, AlQaradawi SY. Electronic, infrared, mass spectrometry and thermal studies on the reaction of 2-amino-6-methylpyridine with π-acceptors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Synthesis, Characterization, and Biological Evaluation of a New Hydrogen-Bonded Charge-Transfer Complex of 2-Amino-4-methoxy-6-methylpyrimidine. J CHEM-NY 2019. [DOI: 10.1155/2019/1743147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new hydrogen-bonded charge-transfer (HB-CT) complex formed between the donor 2-amino-4-methoxy-6-methylpyrimidine (AMMP) and the π-acceptor 2,5-dihydroxy-p-benzoquinone (DHBQ) was investigated in both solid and solution states. The investigation was conducted using UV-Vis, CHN, FTIR, 1H NMR, XRD, and TG-DTA analyses. The molecular composition of the CT complex in MeOH was found to be 1 : 1. The formation constant (KCT), molecular extinction coefficient (ε), and several other spectroscopic physical parameters were evaluated at different temperatures. The thermodynamic properties of the CT interaction in MeOH were studied by calculating the enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°). The thermodynamic parameters indicated that van der Waals interactions and hydrogen bonding occur between AMMP and DHBQ in MeOH. The CHN, FTIR, and TG-DTA measurements confirmed that the solid HB-CT complex forms in a 2 : 1 ratio, i.e., [(AMMP)2(DHBQ)], and exhibits high stability. Moreover, XRD analysis was used to establish that the mean particle size of the complex is 23 nm. Finally, the solid HB-CT complex was screened for its antibacterial, antifungal, and antioxidant activities. It shows good activity against various bacterial and fungal species. Furthermore, the HB-CT complex exhibits good DPPH scavenging activity.
Collapse
|
24
|
Mohamdi M, Bensouilah N, Trad N, Abdaoui M. Synthesis, experimental characterization and theoretical calculation of novel charge transfer complex between (S, S)-bis-N,N-sulfonyl bis –l-phenylalanine dimethylester and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Al-Saif FA, El-Habeeb AA, Refat MS, Eldaroti HH, Adam AMA, Fetooh H, Saad HA. Chemical and physical properties of the charge transfer complexes of domperidone antiemetic agent with π-acceptors. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111517] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Al-Saif FA, El-Habeeb AA, Refat MS, Adam AMA, Saad HA, El-Shenawy AI, Fetooh H. Characterization of charge transfer products obtained from the reaction of the sedative-hypnotic drug barbital with chloranilic acid, chloranil, TCNQ and DBQ organic acceptors. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Mostafa A, Madrahimov S, Fadlallah J, AlQaradawi SY. UV–Vis, IR spectra, mass spectrometry and thermal studies of charge transfer complexes formed in the reaction of 1, 4, 8, 11-tetraazacyclotetradecane with π-electron acceptors. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Abbu V, Nampally V, Baindla N, Tigulla P. Stoichiometric, Thermodynamic and Computational DFT Analysis of Charge Transfer Complex of 1-Benzoylpiperazine with 2, 3-Dichloro-5, 6-Dicyano-1, 4-benzoquinone. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00847-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Almalki AS, Alhadhrami A, Obaid RJ, Alsharif MA, Adam AMA, Grabchev I, Refat MS. Preparation of some compounds and study their thermal stability for use in dye sensitized solar cells. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Palnati MK, Baindla N, Tigulla P. Spectrophotometric, Thermodynamic and Density Functional Studies of Charge Transfer Complex Between Benzhydryl Piperazine and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0767-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Synthesis, Spectroscopic and Computational Studies of Charge-Transfer Complexation Between 4-Aminoaniline and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. J SOLUTION CHEM 2017. [DOI: 10.1007/s10953-017-0685-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Lakkadi A, Baindla N, Vuppala S, Tigulla P. Synthesis, spectroscopic, and computational studies of charge-transfer complexation between benzidine with 2,3-dichloro-5,6-dicyano-p-benzoquinone and chloronil. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Naveen Baindla
- Department of Chemistry; Osmania University; Hyderabad TS India
| | - Srimai Vuppala
- Department of Chemistry; Osmania University; Hyderabad TS India
| | | |
Collapse
|
33
|
Adam AMA, Refat MS. Solution and solid-state investigations of charge transfer complexes caused by the interaction of bathophenanthroline with different organic acceptors in a (methanol + dichloromethane) binary solvent system. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Hassan HE, Refat MS, Sharshar T. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:238-248. [PMID: 26867205 DOI: 10.1016/j.saa.2016.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/20/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.
Collapse
Affiliation(s)
- H E Hassan
- Cyclotron Facility, Nuclear Research Center, Atomic Energy Authority, Cairo 13759, Egypt.
| | - Moamen S Refat
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - T Sharshar
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt; Physics Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia
| |
Collapse
|
35
|
Adam AMA, Refat MS, Saad HA, Hegab MS. Charge transfer complexation of the anticholinergic drug clidinium bromide and picric acid in different polar solvents: Solvent effect on the spectroscopic and structural morphology properties of the product. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
AlQaradawi SY, Mostafa A, Bengali A. Charge-transfer complexes formed in the reaction of 2-amino-4-ethylpyridine with π-electron acceptors. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.10.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Sparfloxacin charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: Molecular structures, spectral, and DFT studies. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.03.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Berto S, Chiavazza E, Ribotta V, Daniele PG, Barolo C, Giacomino A, Vione D, Malandrino M. Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:75-82. [PMID: 25942088 DOI: 10.1016/j.saa.2015.04.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
The charge-transfer complexes have scientific relevance because this type of molecular interaction is at the basis of the activity of pharmacological compounds and because the absorption bands of the complexes can be used for the quantification of electron donor molecules. This work aims to assess the stability of the charge-transfer complexes between the electron acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and two drugs, procaine and atenolol, in acetonitrile and ethanol. The stability of DDQ in solution and the time required to obtain the maximum complex formation were evaluated. The stoichiometry and the stability of the complexes were determined, respectively, by Job's plot method and by the elaboration of UV-vis titrations data. The latter task was carried out by using the non-linear global analysis approach to determine the equilibrium constants. This approach to data elaboration allowed us to overcome the disadvantages of the classical linear-regression method, to obtain reliable values of the association constants and to calculate the entire spectra of the complexes. NMR spectra were recorded to identify the portion of the donor molecule that was involved in the interaction. The data support the participation of the aliphatic amino groups in complex formation and exclude the involvement of the aromatic amine present in the procaine molecule.
Collapse
Affiliation(s)
- Silvia Berto
- Dept. of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| | - Enrico Chiavazza
- Dept. of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy.
| | - Valentina Ribotta
- Dept. of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| | | | - Claudia Barolo
- Dept. of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy; INSTM and NIS Centre, University of Torino, Via Quarello 15A, 10135 Turin, Italy
| | - Agnese Giacomino
- Dept. of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Turin, Italy
| | - Davide Vione
- Dept. of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| | - Mery Malandrino
- Dept. of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
39
|
AlQaradawi SY, Mostafa A, Bazzi HS. Charge-transfer complexes of 4-methylpiperidine with σ- and π-acceptors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:498-505. [PMID: 25123938 DOI: 10.1016/j.saa.2014.07.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/05/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The solid charge-transfer (CT) molecular complexes formed in the reaction of the electron donor 4-methylpiperidine (4MP) with the σ-electron acceptor iodine and π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) have been investigated spectrophotometrically in chloroform at 25 °C. These were characterized through electronic and infrared spectra as well as elemental and thermal analysis. The obtained results showed that the formed solid CT-complexes have the formulas [(4MP) I](+)I(-)3, [(4MP)(DDQ)2] and [(4MP)(TBCHD)] and with TCNQ the adduct [TCMPQDM] is obtained through N-substitution reaction in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT, molar extinction coefficient εCT, free energy change ΔG(0), CT energy ECT and the ionization potential Ip have been calculated for the CT-complexes [(4MP) I](+)I(-)3, [(4MP)(DDQ)2] and [(4MP)(TBCHD)].
Collapse
Affiliation(s)
- Siham Y AlQaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Adel Mostafa
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| |
Collapse
|
40
|
Spectroscopic analysis, thermodynamic study and molecular modeling of charge transfer complexation between 2-amino-5,6-dimethyl-1,2,4-triazine with DDQ in acetonitrile. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Al-Ahmary KM. Spectroscopic characterization of charge transfer complexes of 2,3-diaminopyridine with chloranilic acid and dihydroxy-p-benzoquinone in polar solvent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:635-644. [PMID: 24113016 DOI: 10.1016/j.saa.2013.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Charge transfer (CT) complexes formed between 2,3-aminopyridine (2,3-DAP) as electron donor with the π-electron acceptors chloranilic acid (CHA) and dihydroxy-p-benzoquinone (DHBQ) were investigated spectrophotometrically in ethanol. Minimum-maximum absorbance method has been used for estimating the formation constants of the charge transfer reactions (KCT). Job's method of continuous variation and photometric titration studies were used to detect the stoichiometric ratios of the formed complexes and they showed that 1:1 complexes were produced. The molar extinction coefficient (ε), oscillator strength (f), dipole moment (μ), charge transfer energy (ECT), ionization potential (IP) and the dissociation energy (W) of the formed complexes were estimated, they reached acceptable values suggesting the stability of the formed CT-complexes. The solid CT-complexes were synthesized and characterized by elemental analyses, (1)H NMR and FTIR spectroscopies where the formed complexes included proton and electron transfer.
Collapse
Affiliation(s)
- Khairia M Al-Ahmary
- Chemistry Department, Sciences Faculty for Girls, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
42
|
UV–Vis, IR spectra and thermal studies of charge transfer complexes formed in the reaction of 4-benzylpiperidine with σ- and π-electron acceptors. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Spectral studies to increase the efficiency and stability of laser dyes by charge-transfer reactions for using in solar cells: charge-transfer complexes of Ponceau S with p-chloranil, chloranilic and picric acids. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Charge transfer complexes of 2-arylaminomethyl-1H-benzimidazole with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Experimental and DFT studies. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Al-Ahmary KM, El-Kholy MM, Al-Solmy IA, Habeeb MM. Spectroscopic studies and molecular orbital calculations on the charge transfer reaction between DDQ and 2-aminopyridine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 110:343-350. [PMID: 23583852 DOI: 10.1016/j.saa.2013.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Charge transfer complex formation between 2-aminopyridine (donor, 2AP) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (acceptor, DDQ) has been studied spectrophotometrically in acetonitrile (CH3CN). The newly formed CT-complex has reddish brown color and is characterized by the appearance of new absorption bands in the 375-650 nm regions where acceptor and donor do not have any absorption. Maximum and constant absorbance of the complex was obtained after 10 min at 20 °C with 1 mL 5×10(-3) M DDQ in CH3CN. Based on photometric titration method, the stoichiometry of the formed CT-complex was found to be 1:1 [(2AP)(DDQ)]. Minimum-maximum absorbances method has been applied to estimate the formation constant of the complex where it recorded large value confirming its high stability. Molecular orbital calculations utilizing GAMESS computations were carried out in order to record changes in the electronic structure and molecular geometry of the formed CT-complex. In addition, the infrared vibrational frequencies of the complex were computed and compared with experimental results.
Collapse
Affiliation(s)
- Khairia M Al-Ahmary
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | |
Collapse
|
46
|
Eldaroti HH, Gadir SA, Refat MS, Adam AMA. Preparation, spectroscopic and thermal characterization of new charge-transfer complexes of ethidium bromide with π-acceptors. In vitro biological activity studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:259-271. [PMID: 23542517 DOI: 10.1016/j.saa.2013.03.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/12/2012] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Ethidium bromide (EtBr) is a strong DNA binder and has been widely used to probe DNA structure in drug-DNA and protein-DNA interaction. Four new charge-transfer (CT) complexes consisting of EtBr as donor and quinol (QL), picric acid (PA), tetracyanoquinodimethane (TCNQ) or dichlorodicyanobenzoquinone (DDQ) as acceptors, were synthesized and characterized by elemental analysis, electronic absorption, spectrophotometric titration, IR, Raman, (1)H NMR and X-ray powder diffraction (XRD) techniques. The stoichiometry of these complexes was found to be 1:2 ratio and having the formula [(EtBr)(acceptor)]. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). The CT complexes were also tested for its antibacterial activity against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and two Gram-negative bacteria; Escherichia coli and Pseudomonas aeuroginosa strains by using Tetracycline as standard and antifungal property against Aspergillus flavus and Candida albicans by using amphotericin B as standard. The results were compared with the standard drugs and significant conclusions were obtained. The results indicated that the [(EtBr)(QL)2] complex had exerted excellent inhibitory activity against the growth of the tested bacterial strains.
Collapse
Affiliation(s)
- Hala H Eldaroti
- Department of Chemistry, Faculty of Education, Alzaeim Alazhari University, Khartoum, Sudan.
| | | | | | | |
Collapse
|
47
|
Spectral and solvation effect studies on charge transfer complex of 2, 6-diaminopyridine with chloranilic acid. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Adam AMA, Refat MS, Saad HA. Utilization of charge-transfer complexation for the detection of carcinogenic substances in foods: Spectroscopic characterization of ethyl carbamate with some traditional π-acceptors. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
AlQaradawi SY, Mostafa A, Bazzi HS. Charge-transfer complexes formed in the reaction of 1,4,7,10-tetraazacyclododecane with π-electron acceptors. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Adam AMA. Structural, thermal, morphological and biological studies of proton-transfer complexes formed from 4-aminoantipyrine with quinol and picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 104:1-13. [PMID: 23274251 DOI: 10.1016/j.saa.2012.11.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
4-Aminoantipyrine (4AAP) is widely used in the pharmaceutical industry, biochemical experiments and environmental monitoring. However, residual amounts of 4AAP in the environment may pose a threat to human health. To provide basic data that can be used to extract or eliminate 4AAP from the environment, the proton-transfer complexes of 4AAP with quinol (QL) and picric acid (PA) were synthesized and spectroscopically investigated. The interactions afforded two new proton-transfer salts named 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-4-hydroxyphenolate and 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium-2,4,6-trinitrophenolate for QL and PA, respectively, via a 1:1 stoichiometry. Elemental analysis (CHN), electronic absorption, spectrophotometric titration, IR, Raman, (1)H NMR and X-ray diffraction were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). It was found that PA and 4AAP immediately formed a yellow precipitate with a remarkable sponge-like morphology and good thermal stability up to 180°C. Finally, the biological activities of the newly synthesized CT complexes were tested for their antibacterial and antifungal activities. The results indicated that the [(4AAP)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, PO Box 888, Zip Code 21974, Taif, Saudi Arabia.
| |
Collapse
|