1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Sarà M, Giofrè SV, Abate S, Trapani M, Verduci R, D’Angelo G, Castriciano MA, Romeo A, Neri G, Monsù Scolaro L. Absorption and Fluorescence Emission Investigations on Supramolecular Assemblies of Tetrakis-(4-sulfonatophenyl)porphyrin and Graphene Quantum Dots. Molecules 2024; 29:2015. [PMID: 38731505 PMCID: PMC11085775 DOI: 10.3390/molecules29092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The one-pot synthesis of N-doped graphene quantum dots (GQDs), capped with a positively charged polyamine (trien), has been realized through a microwave-assisted pyrolysis on solid L-glutamic acid and trien in equimolar amounts. The resulting positively charged nanoparticles are strongly emissive in aqueous solutions and are stable for months. The interaction with the anionic tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) has been investigated at neutral and mild acidic pH using a combination of UV/vis absorption spectroscopy together with static and time-resolved fluorescence emission. At pH = 7, the experimental evidence points to the formation of a supramolecular adduct mainly stabilized by electrostatic interactions. The fluorescence emission of the porphyrin is substantially quenched while GQDs remain still emissive. On decreasing the pH, protonation of TPPS4 leads to formation of porphyrin J-aggregates through the intermediacy of the charged quantum dots.
Collapse
Affiliation(s)
- Mariachiara Sarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Salvatore Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Mariachiara Trapani
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| | - Rosaria Verduci
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.V.); (G.D.)
| | - Giovanna D’Angelo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.V.); (G.D.)
| | - Maria Angela Castriciano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Andrea Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| | - Giovanni Neri
- Dipartimento di Ingegneria, University of Messina, Contrada di Dio, 98158 Messina, Italy;
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| |
Collapse
|
3
|
Shaha C, Sarker B, Mahalanobish SK, Hossain MS, Karmaker S, Saha TK. Kinetics, Equilibrium, and Thermodynamics for Conjugation of Chitosan with Insulin-Mimetic [ meso-Tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4-) in an Aqueous Solution. ACS OMEGA 2023; 8:41612-41623. [PMID: 37970023 PMCID: PMC10634234 DOI: 10.1021/acsomega.3c05804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
This study investigated the conjugation of chitosan with the insulin-mimetic [meso-tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4-), VO(tpps), in an aqueous medium as a function of conjugation time, VO(tpps) concentrations, and temperatures. To validate the synthesis of chitosan-VO(tpps) conjugate, UV-visible and Fourier transform infrared spectrophotometric techniques were utilized. Conjugate formation is ascribed to the electrostatic interaction between the NH3+ units of chitosan and the SO3- units of VO(tpps). Chitosan enhances the stability of VO(tpps) in an aqueous medium (pH 2.5). VO(tpps) conjugation with chitosan was best explained by pseudo-second-order kinetic and Langmuir isotherm models based on kinetic and isotherm studies. The Langmuir equation determined that the maximal ability of VO(tpps) conjugated with each gram of chitosan was 39.22 μmol at a solution temperature of 45 °C. Activation energy and thermodynamic studies (Ea: 8.78 kJ/mol, ΔG: -24.52 to -27.55 kJ/mol, ΔS: 204.22 J/(mol K), and ΔH: 37.30 kJ/mol) reveal that conjugation is endothermic and physical in nature. The discharge of VO(tpps) from conjugate was analyzed in freshly prepared 0.1 mol/L phosphate buffer (pH 7.4) at 37 °C. The release of VO(tpps) from the conjugate is a two-phase process best explained by the Higuchi model, according to a kinetic analysis of the release data. Taking into consideration all experimental findings, it is proposed that chitosan can be used to formulate both solid and liquid insulin-mimetic chitosan-VO(tpps) conjugates.
Collapse
Affiliation(s)
- Chironjit
Kumar Shaha
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary
Drug Residue Analysis Division, Institute
of Food and Radiation Biology, Atomic Energy Research Establishment
(AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | - Bithy Sarker
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Sharif Hossain
- Department
of Biotechnology & Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Subarna Karmaker
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
4
|
Sewid FA, Annas KI, Dubavik A, Veniaminov AV, Maslov VG, Orlova AO. Chitosan nanocomposites with CdSe/ZnS quantum dots and porphyrin. RSC Adv 2021; 12:899-906. [PMID: 35425094 PMCID: PMC8978810 DOI: 10.1039/d1ra08148a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Water-soluble nanocomposites based on CdSe/ZnS quantum dots (QDs) and hydrophobic tetraphenylporphyrin (TPP) molecules passivated by chitosan (CS) have been formed. Magnetic circular dichroism (MCD) spectra evidence TPP presence in both monomeric and agglomerated forms in the nanocomposites. The nanocomposites demonstrate more pronounced singlet oxygen generation compared to free TPP in CS at the same concentration due to the intracomplex Förster resonance energy transfer (FRET) with a 45% average efficiency.
Collapse
Affiliation(s)
- F A Sewid
- ITMO University St. Petersburg 197101 Russia
- Faculty of Science, Mansoura University Egypt
| | - K I Annas
- ITMO University St. Petersburg 197101 Russia
| | - A Dubavik
- ITMO University St. Petersburg 197101 Russia
| | | | - V G Maslov
- ITMO University St. Petersburg 197101 Russia
| | - A O Orlova
- ITMO University St. Petersburg 197101 Russia
| |
Collapse
|
5
|
Liu W, Lin C, Weber JA, Stern CL, Young RM, Wasielewski MR, Stoddart JF. Cyclophane-Sustained Ultrastable Porphyrins. J Am Chem Soc 2020; 142:8938-8945. [PMID: 32243141 DOI: 10.1021/jacs.0c02311] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the encapsulation of free-base and zinc porphyrins by a tricyclic cyclophane receptor with subnanomolar binding affinities in water. The high affinities are sustained by the hydrophobic effect and multiple [CH···π] interactions covering large [π···π] stacking surfaces between the substrate porphyrins and the receptor. We discovered two co-conformational isomers of the 1:1 complex, where the porphyrin is orientated differently inside the binding cavity of the receptor on account of its tricyclic nature. The photophysical properties and chemical reactivities of the encapsulated porphyrins are modulated to a considerable extent by the receptor. Improved fluorescence quantum yields, red-shifted absorptions and emissions, and nearly quantitative energy transfer processes highlight the emergent photophysical enhancements. The encapsulated porphyrins enjoy unprecedented chemical stabilities, where their D/H exchange, protonation, and solvolysis under extremely acidic conditions are completely blocked. We anticipate that the ultrahigh stabilities and improved optical properties of these encapsulated porphyrins will find applications in single-molecule materials, artificial photodevices, and biomedical appliances.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenjian Lin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jacob A Weber
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Lipatova IM, Mezina EA, Yusova AA. Supramolecular Self-Assembly and Phase Transformations in Aqueous Systems Based on Chitosan and Sulfonated Metallophthalocyanines. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Invertion and methylation of pyrrole ring in tetrasulfophenylporphyrin: basicity, aggregation properties, chirality. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Carbon dioxide capture and conversion by an environmentally friendly chitosan based meso-tetrakis(4-sulfonatophenyl) porphyrin. Carbohydr Polym 2017; 175:575-583. [DOI: 10.1016/j.carbpol.2017.08.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022]
|
9
|
Sugikawa K, Takamatsu Y, Kakigi T, Yasuhara K, Ikeda A. Tubulation of liposomes via the interaction of supramolecular nanofibers. Chem Commun (Camb) 2017; 53:10140-10143. [PMID: 28848982 DOI: 10.1039/c7cc05857h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We achieved tubulation of self-assembled lipid membranes, liposomes, via the interaction of supramolecular nanofibers, porphyrin J-aggregates. This structural change was reversible, and the deformation of the porphyrin J-aggregates caused reconstruction of the liposomes from the tubes. We discussed the tubulation mechanism and calculated the force provided by porphyrin J-aggregates for tubulation.
Collapse
Affiliation(s)
- Kouta Sugikawa
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | | | | | | | | |
Collapse
|
10
|
Díaz C, Catalán-Toledo J, Flores ME, Orellana SL, Pesenti H, Lisoni J, Moreno-Villoslada I. Dispersion of the Photosensitizer 5,10,15,20-Tetrakis(4-Sulfonatophenyl)-porphyrin by the Amphiphilic Polymer Poly(vinylpirrolidone) in Highly Porous Solid Materials Designed for Photodynamic Therapy. J Phys Chem B 2017; 121:7373-7381. [PMID: 28692270 DOI: 10.1021/acs.jpcb.7b04727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of the amphiphilic and biocompatible poly(vinylpyrrolidone) to avoid self-aggregation of the photosensitizer 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous solution in the presence of the biocompatible polycation chitosan, polymer that induces the dye self-aggregation, is shown. This is related to the tendency of the dye to undergo preferential solvation by the amphiphilic polymer. Importantly, the dispersant ability of this polymer is transferred to the solid state. Thus, aerogels made of the biocompatible polymers chitosan and chondroitin sulfate, and containing the photosensitizer dispersed by the amphiphilic polymer have been synthesized. Production of reactive oxygen species by the aerogel containing the amphiphilic polymer was faster than when the polymer was absent, correlating with the relative concentration of dyes dispersed as monomers. The aerogels presented here constitute low cost biocompatible materials bearing a conventional photosensitizer for photodynamic therapy, easy to produce, store, transport, and manage in clinical practice.
Collapse
Affiliation(s)
- Claudia Díaz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile , Isla Teja, Casilla, 567 Valdivia, Chile
| | - José Catalán-Toledo
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile , Isla Teja, Casilla, 567 Valdivia, Chile
| | - Mario E Flores
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile , Isla Teja, Casilla, 567 Valdivia, Chile
| | - Sandra L Orellana
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile , Isla Teja, Casilla, 567 Valdivia, Chile
| | - Héctor Pesenti
- Escuela de Ingeniería de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco , Temuco, Chile
| | - Judit Lisoni
- Instituto de Ciencias Física y Matemáticas, Universidad Austral de Chile , Región de los Ríos, 641 Valdivia, Chile
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile , Isla Teja, Casilla, 567 Valdivia, Chile
| |
Collapse
|
11
|
Sugikawa K, Takamatsu Y, Yasuhara K, Ueda M, Ikeda A. Reversible Vesicle-to-Disk Transitions of Liposomes Induced by the Self-Assembly of Water-Soluble Porphyrins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1023-1029. [PMID: 28054781 DOI: 10.1021/acs.langmuir.6b02723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Structural control of lipid membranes is important for mechanisms underlying biological functions and for creating high-functionality soft materials. We demonstrate the reversible control of vesicle structures (liposomes) using supramolecular assemblies. Specifically, water-soluble anionic porphyrin molecules interact with positively charged lipid membrane surfaces to form one-dimensional self-assembled structures (J-aggregates) under acidic conditions. Cryogenic transmission electron microscopy revealed that porphyrin J-aggregates on the membrane surface induced an extensive structural change from vesicles to layered disks. Neutralization of the solution deformed the porphyrin J-aggregates, thereby reforming nanosized liposomes from the layered disks.
Collapse
Affiliation(s)
- Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | - Yutaro Takamatsu
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | - Kazuma Yasuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology , Nara 630-0192, Japan
| | - Masafumi Ueda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University , Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
12
|
El-Hachemi Z, Balaban TS, Campos JL, Cespedes S, Crusats J, Escudero C, Kamma-Lorger CS, Llorens J, Malfois M, Mitchell GR, Tojeira AP, Ribó JM. Effect of Hydrodynamic Forces on meso-(4-Sulfonatophenyl)-Substituted Porphyrin J-Aggregate Nanoparticles: Elasticity, Plasticity and Breaking. Chemistry 2016; 22:9740-9. [PMID: 27238461 DOI: 10.1002/chem.201600874] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/10/2022]
Abstract
The J aggregates of 4-sulfonatophenyl meso-substituted porphyrins are non-covalent polymers obtained by self-assembly that form nanoparticles of different morphologies. In the case of high aspect-ratio nanoparticles (bilayered ribbons and monolayered nanotubes), shear hydrodynamic forces may modify their shape and size, as observed by peak force microscopy, transmission electron microscopy of frozen solutions, small-angle X-ray scattering measurements in a disk-plate rotational cell, and cone-plate rotational viscometry. These nanoparticles either show elastic or plastic behaviour: there is plasticity in the ribbons obtained upon nanotube collapse on solid/air interfaces and in viscous concentrated nanotube solutions, whereas elasticity occurs in the case of dilute nanotube solutions. Sonication and strong shear hydrodynamic forces lead to the breaking of the monolayered nanotubes into small particles, which then associate into large colloidal particles.
Collapse
Affiliation(s)
- Zoubir El-Hachemi
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona (UB), c. Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain.
| | | | - J Lourdes Campos
- Department of Chemical Engineering, Polytechnic University of Catalonia (UPC), Av. Diagonal 647, Barcelona, Catalonia, 08028, Spain
| | - Sergio Cespedes
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona (UB), c. Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Joaquim Crusats
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona (UB), c. Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Carlos Escudero
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Christina S Kamma-Lorger
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Joan Llorens
- Department of Chemical Engineering, University of Barcelona, c. Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain
| | - Marc Malfois
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Geoffrey R Mitchell
- Center for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal, 2430-028 Marinha Grande, Portugal
| | - Ana P Tojeira
- Center for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal, 2430-028 Marinha Grande, Portugal
| | - Josep M Ribó
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona (UB), c. Martí I Franquès 1, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydr Polym 2015; 140:461-71. [PMID: 26876874 DOI: 10.1016/j.carbpol.2015.12.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 01/31/2023]
Abstract
This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra.
Collapse
|
14
|
Saha TK, Karmaker S, Alam MF. Kinetics, mechanism and thermodynamics involved in sorption of meso-tetrakis(4-sulfonatophenyl)porphyrin onto chitosan in aqueous medium. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424613501174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sorption of meso-tetrakis(4-sulfonatophenyl)porphyrin ( H 2 tpps ) onto chitosan has been investigated in aqueous medium. Kinetic and isotherm studies were carried out by considering the effects of various parameters, such as pH, initial concentration of H 2 tpps solution, and temperature. The kinetic data obtained from different batch experiments were analyzed using pseudo first-, second-order, intraparticle, and film diffusion kinetic models. The equilibrium sorption data was analyzed by using Tempkin, Langmuir and Freundlich models. The best results were achieved with the pseudo second-order kinetic, Langmuir and Freundlich isotherm models. The intraparticle diffusion and film diffusion are the rate limiting steps. The amount of sorbate adsorbed at equilibrium (qe) increased with increasing the initial concentration of H 2 tpps solution, showing maximum sorption capacity of 445.21 μmol.g-1. The activation energy (Ea) of sorption kinetics was found to be 19.47 kJ.mol-1. Thermodynamic parameters such as change in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were evaluated by applying the Van't Hoff equation. Thermodynamic activation parameters such as change in enthalpy of activation (ΔH‡), entropy of activation (ΔS‡), and free energy of activation (ΔG‡) were also calculated. The thermodynamics of H 2 tpps sorption onto chitosan in aqueous medium indicates its spontaneous and endothermic nature.
Collapse
Affiliation(s)
- Tapan K. Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md F. Alam
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
15
|
Veverková L, Žvátora P, Záruba K, Král V. Receptor modified gold and silver nanoparticles: effect on interactions with oxoanions. Analyst 2013; 138:333-8. [DOI: 10.1039/c2an35971e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Varchi G, Benfenati V, Pistone A, Ballestri M, Sotgiu G, Guerrini A, Dambruoso P, Liscio A, Ventura B. Core–shell poly-methylmethacrylate nanoparticles as effective carriers of electrostatically loaded anionic porphyrin. Photochem Photobiol Sci 2013; 12:760-9. [DOI: 10.1039/c2pp25393c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Synytsya A, Grafová M, Slepicka P, Gedeon O, Synytsya A. Modification of Chitosan–Methylcellulose Composite Films with meso-Tetrakis(4-sulfonatophenyl)porphyrin. Biomacromolecules 2011; 13:489-98. [DOI: 10.1021/bm2015366] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alla Synytsya
- Department
of Analytical Chemistry, ‡Department of Solid State Engineering, §Department of Glass
and Ceramics, and ∥Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, 166 28
Prague, The Czech Republic
| | - Michaela Grafová
- Department
of Analytical Chemistry, ‡Department of Solid State Engineering, §Department of Glass
and Ceramics, and ∥Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, 166 28
Prague, The Czech Republic
| | - Petr Slepicka
- Department
of Analytical Chemistry, ‡Department of Solid State Engineering, §Department of Glass
and Ceramics, and ∥Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, 166 28
Prague, The Czech Republic
| | - Ondrej Gedeon
- Department
of Analytical Chemistry, ‡Department of Solid State Engineering, §Department of Glass
and Ceramics, and ∥Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, 166 28
Prague, The Czech Republic
| | - Andriy Synytsya
- Department
of Analytical Chemistry, ‡Department of Solid State Engineering, §Department of Glass
and Ceramics, and ∥Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, 166 28
Prague, The Czech Republic
| |
Collapse
|
18
|
Pepe-Mooney BJ, Kokona B, Fairman R. Characterization of mesoscale coiled-coil peptide-porphyrin complexes. Biomacromolecules 2011; 12:4196-203. [PMID: 22029379 DOI: 10.1021/bm201354m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoelectronically conductive self-assembling peptide-porphyrin assemblies have great potential in their use as biomaterials, owing largely to their environmentally responsive properties. We have successfully designed a coiled-coil peptide that can self-assemble to form mesoscale filaments and serve as a scaffold for porphyrin interaction. In our earlier work, peptide-porphyrin-based biomaterials were formed at neutral pH, but the structures were irregular at the nano- to microscale size range, as judged by atomic force microscopy. We identified a pH in which mesoscale fibrils were formed, taking advantage of the types of porphyrin interactions that are present in well-characterized J-aggregates. We used UV-visible spectroscopy, circular dichroism spectropolarimetry, fluorescence spectroscopy, and atomic force microscopy to characterize these self-assembling biomaterials. We propose a new assembly paradigm that arises from a set of unique porphyrin-porphyrin and porphyrin-peptide interactions whose structure may be readily modulated by changes in pH or peptide concentration.
Collapse
Affiliation(s)
- Brian J Pepe-Mooney
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United States
| | | | | |
Collapse
|
19
|
de Miguel G, Hosomizu K, Umeyama T, Matano Y, Imahori H, Pérez-Morales M, Martín-Romero MT, Camacho L. J-aggregation of a sulfonated amphiphilic porphyrin at the air–water interface as a function of pH. J Colloid Interface Sci 2011; 356:775-82. [DOI: 10.1016/j.jcis.2011.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
20
|
Zhang L, Tian Y, Liu M. Ionic liquid induced spontaneous symmetry breaking: emergence of predominant handedness during the self-assembly of tetrakis(4-sulfonatophenyl)porphyrin (TPPS) with achiral ionic liquid. Phys Chem Chem Phys 2011; 13:17205-9. [DOI: 10.1039/c1cp21767d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Xyloglucan nano-aggregates: Physico-chemical characterisation in buffer solution and potential application as a carrier for camptothecin, an anti-cancer drug. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Zhang L, Liu M. Supramolecular chirality and chiral inversion of tetraphenylsulfonato porphyrin assemblies on optically active polylysine. J Phys Chem B 2010; 113:14015-20. [PMID: 19827847 DOI: 10.1021/jp902870f] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The self-assembly and induced supramolecular chirality of a dianionic meso-tetraphenylsulfonato porphyrin (TPPS) on the optically active polylysine has been investigated. Our research has confirmed that in the presence of poly(l-lysine) (PLL) or poly(d-lysine) (PDL), TPPS could form both H and J aggregates and the exciton type Cotton effect was induced in the corresponding absorption bands of H and J-aggregates. We have further revealed that the induced chirality of the H-band always followed the chirality of PLL or PDL, while the sign of the exciton couplet in the J-band could be the same as or opposite to that of the H-band depending on the mixing sequence and the ratio of PLL or PDL to TPPS (P/T ratio). At a P/T ratio less than 4, both the J and H aggregates showed the same symbolic CD signal. At a P/T ratio larger than 4, the opposite sign of the exciton couplet was observed for H and J-bands when TPPS was added into PLL, while the same sign was obtained when PLL was added into TPPS. Interestingly, the J-band with the same sign as that of the H-band can be inverted into the opposite sign under heating. A mechanism relating to the dynamic and thermodynamic formation of the chiral aggregates in the presence of PLL or PDL was proposed.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing,100190, People's Republic of China
| | | |
Collapse
|
23
|
Veverková L, Záruba K, Koukolová J, Král V. Oxoanion binding: a change of selectivity for porphyrin–alkaloid conjugates as a result of substitution pattern. NEW J CHEM 2010. [DOI: 10.1039/b9nj00387h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Kokona B, Kim AM, Roden RC, Daniels JP, Pepe-Mooney BJ, Kovaric BC, de Paula JC, Johnson KA, Fairman R. Self assembly of coiled-coil peptide-porphyrin complexes. Biomacromolecules 2009; 10:1454-9. [PMID: 19374349 DOI: 10.1021/bm9000553] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We are interested in the controlled assembly of photoelectronic materials using peptides as scaffolds and porphyrins as the conducting material. We describe the integration of a peptide-based polymer strategy with the ability of designed basic peptides to bind anionic porphyrins in order to create regulated photoelectronically active biomaterials. We have described our peptide system in earlier work, which demonstrates the ability of a peptide to form filamentous materials made up of self-assembling coiled-coil structures. We have modified this peptide system to include lysine residues appropriately positioned to specifically bind meso-tetrakis(4-sulfonatophenyl)porphine (TPPS(4)), a porphyrin that contains four negatively charged sulfonate groups at neutral pH. We measure the binding of TPPS(4) to our peptide using UV--visible and fluorescence spectroscopies to follow the porphyrin signature. We determine the concomitant acquisition of helical secondary structure in the peptide upon TPPS(4) binding using circular dichroism spectropolarimetry. This binding fosters polymerization of the peptide, as shown by absorbance extinction effects in the peptide CD spectra. The morphologies of the peptide/porphyrin complexes, as imaged by atomic force microscopy, are consistent with the coiled-coil polymers that we had characterized earlier, except that the heights are slightly higher, consistent with porphyrin binding. Evidence for exciton coupling in the copolymers is shown by red-shifting in the UV--visible data, however, the coupling is weak based on a lack of fluorescence quenching in fluorescence experiments.
Collapse
Affiliation(s)
- Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kathiravan A, Renganathan R. Fluorescence Quenching of Meso-Tetrakis(p-Sulfonatophenyl)Porphyrin (TSPP) by certain Organic Dyes. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2008.5215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The fluorescence quenching of meso-tetrakis (p-sulfonatophenyl) porphyrin (TSPP) by certain anthraquinone and azo dyes has been investigated using steady state fluorescence technique. The dyes used were Uniblue-A, Acid blue 129, Alizarin, Alizarin red S, Erichrome Black T, Tartrazine, Methyl orange, Methyl red, Acid orange 63 and Congo red. The quenching was found to obey Stern-Volmer equation and the corresponding Stern-Volmer plots were linear. The quenching rate constant (k
q
) is in the order of 0.19–6.08×1012 M−
1s−
1. This study reveals effective quenching of TSPP by organic dyes.
Collapse
|
26
|
Synytsya A, Synytsya A, Blafková P, Ederová J, Spěvaček J, Slepička P, Král V, Volka K. pH-Controlled Self-Assembling of meso-Tetrakis(4-sulfonatophenyl)porphyrin−Chitosan Complexes. Biomacromolecules 2009; 10:1067-76. [DOI: 10.1021/bm8011715] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alla Synytsya
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Andriy Synytsya
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Petra Blafková
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Jana Ederová
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Jiři Spěvaček
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Petr Slepička
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| | - Karel Volka
- Department of Analytical Chemistry, Department of Carbohydrate Chemistry and Technology, Central Laboratories, Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic, and Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague 16206, Czech Republic
| |
Collapse
|
27
|
Kaneko Y, Iyi N. Sol–gel synthesis of ladder polysilsesquioxanes forming chiral conformations and hexagonal stacking structures. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b910345g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Luz PP, Neri CR, Serra OA. Dextrin-Microencapsulated Porphyrin: Luminescent Properties. Ann N Y Acad Sci 2008; 1130:91-6. [DOI: 10.1196/annals.1430.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Králová J, Koivukorpi J, Kejík Z, Poučková P, Sievänen E, Kolehmainen E, Král V. Porphyrin–bile acid conjugates: from saccharide recognition in the solution to the selective cancer cell fluorescence detection. Org Biomol Chem 2008; 6:1548-52. [DOI: 10.1039/b717528k] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Liao B, Liu R, Huang Y. A Supramolecular Chiroptical Switch Based on Chitosan and Anionic Porphyrin Complex Film. Polym J 2007. [DOI: 10.1295/polymj.pj2007036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|