1
|
Sarath Kumar CB, Reji RP, Sivalingam Y, Kawazoe Y, Surya VJ. Carbon and boron nitride quantum dots as optical sensor probes for selective detection of toxic metals in drinking water: a quantum chemical prediction through structure- and morphology-dependent electronic and optical properties. RSC Adv 2024; 14:28182-28200. [PMID: 39234523 PMCID: PMC11372860 DOI: 10.1039/d4ra04843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Toxic metals present in drinking water pose a serious threat to the environment and human beings when present in abundance. In this work, we investigated the sensing ability of quantum dots (pristine CQDs, boron/nitrogen/sulphur (B/N/S)-doped CQDs, and BNQDs) of various sizes and morphologies (rectangular, circular, and triangular) towards toxic metals such as arsenic (As), cobalt (Co), nickel (Ni), copper (Cu), and lead (Pb) using quantum chemical density functional theory calculations in both gas and water phases. We probed the structural, electronic, and optical properties of the QDs. All the modelled QDs are energetically stable. Frontier molecular orbital analysis predicted that BNQDs are more chemically stable than all other CQDs. UV-vis absorption and Raman spectra analyses helped to understand the optical properties of all the QDs. Further, adsorption studies revealed that triangular pristine CQDs and sulphur-doped CQDs show higher adsorption affinity towards the toxic metals. The magnitude of adsorption energies follows the trend Ni > Pb > As > Cu > Co in most of the QDs. Several pristine and doped CQDs exhibited chemisorption towards the toxic metals, and hence, they can be used as adsorbents. However, a majority of BNQDs showed physisorption towards the metals, and therefore, they can be used as efficient optical sensors compared to CQDs. Further, the sensing ability of the QDs was explored through optical phenomena such as changes in UV-vis absorption spectra and fluorescence after metal adsorption. When compared to pristine CQDs and B/N/S-doped CQDs, metal complexation caused significant changes in the UV-vis absorbance peak intensities in BNQDs along with peak shifts. Moreover, metal interaction with the QDs increased their fluorescence lifetime with the highest values observed in Co-adsorbed triangular H18C46 (152.30 ns), Pb-adsorbed rectangular H15C30S (21.29 ns), and As-adsorbed circular B27N27H18 (2.99 μs) among pristine CQDs, B/N/S-doped CQDs, and BNQDs, respectively. Overall, we believe that our first-of-its-kind computational prediction of the optical sensing ability of tailor-made zero-dimensional systems such as QDs will be a great aid for experimentalists in designing novel and rapid optical probes to detect toxic metals in drinking water.
Collapse
Affiliation(s)
- Chedharla Balaji Sarath Kumar
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Rence Painappallil Reji
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Aoba-ku, Miyagi Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Velappa Jayaraman Surya
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- New Industry Creation Hatchery Center, Tohoku University Aoba-ku, Miyagi Sendai 980-8579 Japan
| |
Collapse
|
2
|
Şahin S, Can NN. A Schiff Base with Polymorphic Structure ( Z′ = 2): Investigations with Computational Techniques and in Silico Predictions. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2161585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Songül Şahin
- Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Nisa Nur Can
- Department of Neuroscience, Institute of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
3
|
Rudrapal M, Celik I, Chinnam S, Çevik UA, Tallei TE, Nizam A, Joy F, Abdellattif MH, Walode SG. Analgesic and Anti-Inflammatory Potential of Indole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2139733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayaseri, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Visvesvaraya Technological University, Bengaluru, India
| | - Ulviye Acar Çevik
- Department of Pharaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Trina Ekawati Tallei
- Deparment of Biology, Faculty of Matematic and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to Be University), Bengaluru, India
| | - Francis Joy
- Department of Chemistry, CHRIST (Deemed to Be University), Bengaluru, India
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| |
Collapse
|
4
|
A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer's disease, toxicity, and ADME studies. Comput Biol Med 2022; 146:105514. [DOI: 10.1016/j.compbiomed.2022.105514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 01/18/2023]
|
5
|
Medimagh M, Issaoui N, Gatfaoui S, Antonia Brandán S, Al-Dossary O, Marouani H, J. Wojcik M. Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study. Heliyon 2021; 7:e08204. [PMID: 34754970 PMCID: PMC8556648 DOI: 10.1016/j.heliyon.2021.e08204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023] Open
Abstract
In this research, the impact of non-covalent interactions on the FT-IR spectrum and structural, electronic, topological and vibrational properties of hybrid 4-methylbenzylammonium nitrate (4MBN) have been studied combining B3LYP/CC-PVTZ calculations with molecular docking. 4MBN was synthesized and characterized by using the FT-IR spectrum while the optimized structures in gas phase and in ethanol and aqueous solutions have evidenced monodentate coordination between the nitrate and methylbenzylammonium groups, in agreement with that experimental determined for this species by X-ray diffraction. Here, non-covalent interactions were deeply analyzed in terms of topological parameters (AIM), electron localization function (ELF), localized orbital locator (LOL), Hirshfeld surface and reduced density gradient (RDG) method. Weak interactions such as H-bonds, VDW and steric effect in 4MBN were visualized and quantified by the independent gradient density (IGM) based on the promolecular density. The hyper-conjugative and the delocalization of charge in 4MBN have been elucidated by natural bonding orbital (NBO) while its chemical reactivity was studied and discussed by using molecular electrostatic potential surface (MESP), frontier molecular orbital (FMOs), density of state (DOS) and partial density of state (PDOS). The complete vibrational assignments of 69 vibration modes expected for 4MBN are reported together with the scaled force constants while the electronic transitions were evaluated by TD-DFT calculations in ethanol solution. Thermal analysis (DTA and DSC) was also determined. Molecular docking calculations have suggested that 4MBN presents biological activity and could act as a good inhibitor against schizophrenia disease.
Collapse
Affiliation(s)
- Mouna Medimagh
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir, 5079, Tunisia
| | - Noureddine Issaoui
- University of Monastir, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, Monastir, 5079, Tunisia
| | - Sofian Gatfaoui
- University of Carthage, Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte, 7021, Tunisia
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Omar Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Houda Marouani
- University of Carthage, Laboratory of Chemistry of Materials (LR13ES08), Faculty of Sciences of Bizerte, 7021, Tunisia
| | - Marek J. Wojcik
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Gronostajowa 2, Poland
| |
Collapse
|
6
|
Molecular dynamic simulations, ALIE surface, Fukui functions geometrical, molecular docking and vibrational spectra studies of tetra chloro p and m -xylene. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
El-Mansy MAM, El-Bana MS, Fouad SS. On the spectroscopic analyses of 3-Hydroxy-1-Phenyl-Pyridazin-6(2H)one (HPHP): A comparative experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 176:99-105. [PMID: 28086166 DOI: 10.1016/j.saa.2016.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
We have systematically calculated various physical characteristics such as optimized molecular structural parameters, vibrational frequencies, HOMO-LUMO energy gap, total dipole moment and thermochemical parameters: nuclear repulsion energy, ionization energy, electron affinity, global hardness, electronic chemical potential, global electrophilicity index and finally softness (ζ) using DFT/B3LYP utilizing 6-311G(d,p) basis set for 3-Hydroxy-1-Phenyl-Pyridazin-6(2H)one (HPHP). Also, HPHP nonlinear optical (NLO) properties have been checked by DFT/B3LYP utilizing 6-311G(d,p) basis set. In addition, we have investigated the influence of exposure to UV radiation on HPHP physical properties at the same level of theory. Our results show that HPHP possesses a dipole moment (2.68Debye) and HOMO-LUMO energy gap of 3.99eV that emphasize its high applicability for manufacturing photovoltaic devices such as solar cells. After exposure to UV radiation, the HPHP dipole moment has been lowered from 2.68 to 2.3Debye due to UV radiation. Moreover, a double spin in HPHP has been observed, as electrons are aligned according to their spin state. Electrons (spin ↑) and (spin ↓) are aligned in alpha and beta levels with energy gaps 3.82 and 3.17eV, respectively. This anomalous behavior may be justified by considering that HPHP undergoes anomalous Zeeman-like effect. The presence of this phenomenon in HPHP introduces it as a modern organic semiconductor which has high applicability to be used in modern spintronics.
Collapse
Affiliation(s)
- M A M El-Mansy
- Molecular Modeling Simulation Group, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt.
| | - M S El-Bana
- Nano-Science & Semiconductor Laboratories, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
| | - S S Fouad
- Nano-Science & Semiconductor Laboratories, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
| |
Collapse
|
8
|
Lan WB, Gao S, Lin YW, Peng GW, Nie CM. Computational insight into asymmetric uranyl-salophen coordinated with cyclohexenone derivatives. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1209657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Wen-Bo Lan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Sha Gao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Guo-Wen Peng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| |
Collapse
|
9
|
Chiniforoshan H, Pourrahim N, Tabrizi L, Tavakol H, Sabzalian MR, Notash B. Syntheses, studies and crystal structure of new coordination polymers of mercury (II) with phenylcyanamide derivative ligands. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Prabavathi N, Nilufer A, Krishnakumar V. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:483-493. [PMID: 24291424 DOI: 10.1016/j.saa.2013.10.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 06/02/2023]
Abstract
The FTIR and FT-Raman spectra of 1-(m-(trifluoromethyl)phenyl)piperazine [TFMPP] have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of the compound was obtained by the density functional theory using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. A detailed interpretation of the infrared and Raman spectra were also reported based on potential energy distribution (PED). UV-Vis spectrum of the compound was recorded and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. Furthermore, molecular electrostatic potential is performed and also the calculated HOMO and LUMO energies show that charge transfer occurs within the molecule.
Collapse
Affiliation(s)
- N Prabavathi
- Department of Physics, Sri Sarada College for Women (Autonomous), Salem 636 016, India.
| | - A Nilufer
- Department of Physics, Sri Sarada College for Women (Autonomous), Salem 636 016, India
| | - V Krishnakumar
- Department of Physics, Periyar University, Salem 636 011, India
| |
Collapse
|
11
|
Chen J, Wang M. Optical and electrical properties of triphenylamine derivatives for dye-sensitized solar cells and designing of novel molecule. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2213-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|