Domínguez-Martín A, Choquesillo-Lazarte D, Dobado JA, Vidal I, Lezama L, González-Pérez JM, Castiñeiras A, Niclós-Gutiérrez J. From 7-azaindole to adenine: molecular recognition aspects on mixed-ligand Cu(II) complexes with deaza-adenine ligands.
Dalton Trans 2013;
42:6119-30. [PMID:
23324859 DOI:
10.1039/c2dt32191b]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For a better understanding of the versatile behaviour of adenine as a ligand, a series of 10 ternary copper(II) complexes with deaza-adenine ligands [7-azaindole (1,6,7-trideaza-adenine, H7azain), 4-azabenzimidazole (1,6-dideaza-adenine, H4abim), 5-azabenzimidazole (3,6-dideaza-adenine, H5abim), and 7-deaza-adenine (H7deaA)] have been synthesised and characterised by X-ray diffraction. Likewise, all the compounds studied have been analysed by spectral and thermal methods. The proton tautomers and donor capabilities of the above-mentioned deaza-adenine ligands have been calculated by DFT. We conclude that the increasing presence of N-donors in deaza-adenine ligands favours the proton tautomerism and their versatility as co-ligands. Notably, H7azain consistently uses the same tautomer, H4abim uses two different tautomers but is not protonated by the pentadentate H(2)EDTA(2-) ligand, and H(N1)5abim displays the μ(2)-N7,N9 mode, whereas H(N9)7deaA binds Cu(II) by N3 in cooperation with an intra-molecular N9-H···O interaction or using the unprecedented bidentate μ(2)-N1,N3 bridging mode.
Collapse