Chigurupati S, Shaikh SA, Mohammad JI, Selvarajan KK, Nemala AR, Khaw CH, Teoh CF, Kee TH.
In vitro antioxidant and
in vivo antidepressant activity of green synthesized azomethine derivatives of cinnamaldehyde.
Indian J Pharmacol 2018;
49:229-235. [PMID:
29033482 PMCID:
PMC5637133 DOI:
10.4103/ijp.ijp_293_16]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES:
In this study, three (CS-1 to CS-3) azomethine derivatives of cinnamaldehyde were green synthesized, characterized, and their antioxidant and antidepressant activities were explored.
MATERIALS AND METHODS:
The antioxidant effect of these compounds was initially performed in vitro using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay methods before subjecting them to in vivo experiments. Compounds showing potent antioxidant activity (CS-1 and CS-2) were investigated further for their antidepressant activity using the forced swim test (FST) and tail suspension test (TST). Ascorbic acid (AA) and fluoxetine (20 mg/kg, p.o) were used as reference drugs for comparison in the antioxidant and antidepressant experiments, respectively.
RESULTS:
It was observed that CS-2 and CS-3 exhibited highest DPPH (half maximal inhibitory concentration [IC50]: 16.22 and 25.18 μg/mL) and ABTS (IC50: 17.2 and 28.86 μg/mL) radical scavenging activity, respectively, compared to AA (IC50: 15.73 and 16.79 μg/mL) and therefore, both CS-2 and CS-3 were tested for their antidepressant effect using FST and TST as experimental models. Pretreatment of CS-2 and CS-3 (20 mg/kg) for 10 days considerably decreased the immobility time in both the FST and TST models.
CONCLUSION:
The antioxidant and antidepressant effect of CS-2 and CS-3 may be attributed to the presence of azomethine linkage in the molecule.
Collapse