1
|
[6-(Thiophen-2-yl)-2,2′-bipyridine]bis(triphenylphosphine) Copper(I) Tetrafluoroborate. MOLBANK 2023. [DOI: 10.3390/m1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The novel heteroleptic copper (I) complex [6-(thiophen-2-yl)-2,2′-bipyridine]bis(triphenylphosphine) copper(I) tetrafluoroborate (1), formulated as [CuL(PPh3)2]BF4, was synthesized in two steps, utilizing the diimine type ligand L = 6-(thiophen-2-yl)-2,2′-bipyridine and triphenylphosphine (PPh3). The compound was characterized both in the solid state and in solution by employing single crystal X-ray diffraction, IR, UV, and NMR spectroscopies. The complex is an orange emitter that demonstrates a photoluminescence quantum yield of 2.6% in the solid state.
Collapse
|
2
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
3
|
Stitch M, Boota RZ, Chalkley AS, Keene TD, Simpson JC, Scattergood PA, Elliott PIP, Quinn SJ. Photophysical Properties and DNA Binding of Two Intercalating Osmium Polypyridyl Complexes Showing Light-Switch Effects. Inorg Chem 2022; 61:14947-14961. [PMID: 36094851 PMCID: PMC9516684 DOI: 10.1021/acs.inorgchem.2c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The synthesis and
photophysical characterization of two osmium(II)
polypyridyl complexes, [Os(TAP)2dppz]2+ (1) and [Os(TAP)2dppp2]2+ (2) containing dppz (dipyrido[3,2-a:2′,3′-c]phenazine) and dppp2 (pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline) intercalating ligands and TAP (1,4,5,8-tetraazaphenanthrene)
ancillary ligands, are reported. The complexes exhibit complex electrochemistry
with five distinct reductive redox couples, the first of which is
assigned to a TAP-based process. The complexes emit in the near-IR
(1 at 761 nm and 2 at 740 nm) with lifetimes
of >35 ns with a low quantum yield of luminescence in aqueous solution
(∼0.25%). The Δ and Λ enantiomers of 1 and 2 are found to bind to natural DNA and with AT
and GC oligodeoxynucleotides with high affinities. In the presence
of natural DNA, the visible absorption spectra are found to display
significant hypochromic shifts, which is strongly evident for the
ligand-centered π–π* dppp2 transition at 355 nm,
which undergoes 46% hypochromism. The emission of both complexes increases
upon DNA binding, which is observed to be sensitive to the Δ
or Λ enantiomer and the DNA composition. A striking result is
the sensitivity of Λ-2 to the presence of AT DNA,
where a 6-fold enhancement of luminescence is observed and reflects
the nature of the binding for the enantiomer and the protection from
solution. Thermal denaturation studies show that both complexes are
found to stabilize natural DNA. Finally, cellular studies show that
the complexes are internalized by cultured mammalian cells and localize
in the nucleus. Osmium(II)
polypyridyl complexes comprising extended dipyrido[3,2-a:2′,3′-c]phenazine (1) and pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline (2) intercalating ligands
are shown to be effective DNA binders accompanied by enhanced near-IR
emission. The emission response to B-DNA is found to be sensitive
to the enantiomer and the composition of DNA, with greater emission
observed for AT-rich sequences. Thermal denaturation studies show
that both complexes stabilize natural DNA. Cellular studies show that
the complexes are internalized by cultured mammalian cells and localize
in the nucleus.
Collapse
Affiliation(s)
- Mark Stitch
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rayhaan Z Boota
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Alannah S Chalkley
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Tony D Keene
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Paul A Scattergood
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul I P Elliott
- Department of Chemical Sciences, School of Applied Sciences University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
4
|
López‐Molino J, Amo‐Ochoa P. Gas Sensors Based on Copper‐Containing Metal‐Organic Frameworks, Coordination Polymers, and Complexes. Chempluschem 2020; 85:1564-1579. [DOI: 10.1002/cplu.202000428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Jesús López‐Molino
- Faculty of Sciences Department of Inorganic ChemistryUniversidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pilar Amo‐Ochoa
- Faculty of Sciences Department of Inorganic ChemistryUniversidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
5
|
Glebov EM, Bakulina OD, Shushakov AA, Matveeva SG, Pozdnyakov IP, Grivin VP, Plyusnin VF, Vasilchenko DB, Melnikov AA, Chekalin SV. Formation and decay of a triplet state of dipyrido[3,2-a:2′,3′-c]phenazine. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Kozlov MI, Aslandukov AN, Vashchenko AA, Medvedko AV, Aleksandrov AE, Grzibovskis R, Goloveshkin AS, Lepnev LS, Tameev AR, Vembris A, Utochnikova VV. On the development of a new approach to the design of lanthanide-based materials for solution-processed OLEDs. Dalton Trans 2019; 48:17298-17309. [DOI: 10.1039/c9dt03823j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted design of lanthanide-based emitters for solution-processed OLEDs was aimed at the combination of high luminescence efficiency with solubility and charge carrier mobility.
Collapse
Affiliation(s)
| | | | | | | | - Alexey E. Aleksandrov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry
- bld. 4, Moscow
- Russia
| | | | | | | | - Alexey R. Tameev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry
- bld. 4, Moscow
- Russia
| | - Aivars Vembris
- Institute of Solid State Physics, University of Latvia
- Riga
- Latvia
| | | |
Collapse
|
7
|
More M, Pawal S, Lolage S, Chavan S. Syntheses, structural characterization, luminescence and optical studies of Ni(II) and Zn(II) complexes containing salophen ligand. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|