1
|
Luo X, Dai Q, Qiu X, Wang D, Li Y. SERS and electrochemical dual-mode detection of miRNA-141 by using single Au@Ag nanowire as a new platform. Anal Bioanal Chem 2024; 416:4717-4726. [PMID: 38970677 DOI: 10.1007/s00216-024-05423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
As biomarkers of cancer, the accurate and sensitive detection of microRNAs is of great significance. Therefore, we proposed a surface-enhanced Raman scattering (SERS)/electrochemical (EC) dual-mode nanosensor for sensitively detecting miRNA-141. The nanosensor uses Au@Ag nanowires as a novel SERS/EC sensing platform, which has the advantages of good biocompatibility, fast response, and high sensitivity. The dual-mode nanosensor can not only effectively overcome the problem of insufficient reliability of single signal, but also realize the amplification and stable output of the detection signal, to ensure the reliability and repeatability of miRNA detection. With this sensing strategy, the target miRNA-141 can be detected over a wide linear range (100 fM to 50 nM) (LOD of 18.4 fM for SERS and 16.0 fM for electrochemical methods). In addition, the process shows good selectivity and can distinguish miRNA-141 from other interfering miRNAs. The actual analysis of human serum samples also proves that our strategy has good reliability, repeatability, and has broad application prospects in the field of analysis and detection.
Collapse
Affiliation(s)
- Xianzhun Luo
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Qingshan Dai
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P.R. China.
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China.
| |
Collapse
|
2
|
Wei S, Zhao X, Zhao K, Wang M, Xu L, Zhang Y, Huang X, Chen Y. Flexible, foldable and transparent SERS film with high sensitivity and signal homogeneity via silver ion exchange and in-situ reduction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123624. [PMID: 37948934 DOI: 10.1016/j.saa.2023.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The adhesion between metal plasma and substrate was the key of surface-enhanced Raman scattering (SERS) technology. The preparation of ideal SERS substrate with multiple advantages such as high sensitivity and good signal reproducibility was still the focus of research. A flexible foldable and transparent fluorinated polyimide/silver NPs (FPI@Ag) SERS film was fabricated by the ion exchange and in-situ reduction method in this work. The effects of KOH hydrolysis time, AgNO3 ion exchange time and concentration, the type and concentration of reducing agents on the SERS performance of the FPI@Ag film were systematically discussed. As a result, the hydrolysis time of KOH affected the thickness of the metallic silver layer, the concentration of AgNO3 affected the size and spacing of Ag NPs, and the Raman signal of was remarkably enhanced when borane dimethylamine complex (DMAB) was used as reducing agent. When the detection limit of 4-Aminothiophenol was as low as 1 × 10-11 mol·L-1, the obvious Raman characteristic peak still appeared. The enhancement factor (EF) was up to 9.4 × 107. The linear quantification range was achieved in the range from 10-3-10-11 mol·L-1, R2 = 0.9987. In addition, we also performed multi-cycle bending and torsion test on the FPI@Ag film, and obtained stable Raman signals. The prepared FPI@Ag film can be attached to the surface of uneven samples, which can be used for on-site Raman detection and analysis.
Collapse
Affiliation(s)
- Siyu Wei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Xinyu Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Ke Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Meng Wang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - LinZhe Xu
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Yuanyuan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Xiujing Huang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
3
|
Wei S, Wang X, Zhao X, Zhao K, Xu L, Chen Y. Detection of pesticide residues on flexible and transparent fluorinated polyimide film based on surface-enhanced Raman spectroscopy technology. Anal Chim Acta 2023; 1283:341958. [PMID: 37977783 DOI: 10.1016/j.aca.2023.341958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Excessive pesticide residues will seriously endanger human health. The complexity and lag of the current popular analytical methods hinder the timeliness of food safety analysis. Surface-enhanced Raman scattering (SERS) was an ultra-sensitive vibration spectroscopy technology with the advantages of less time cost, non-destructive and semi-quantitative detection, which has attracted much attention in the rapid field detection of pesticide residue. It was clear that we need an efficient and convenient substrate for pesticide residue detection based on SRES technology, which needs to be portable, flexible, transparent and easy to detect irregular object surfaces. RESULTS A novel SERS sensor was designed to detect single and multi-component pesticide residues on irregular fruit and vegetable surfaces by in-situ growth of silver nanoparticles on a flexible and transparent fluorinated polyimide (FPI) substrate. Among them, Ag NPs were synthesized by liquid phase reduction method (AgNO3-PVP and NaBH4). The results showed that the detection limit of 1-4 BDT was down to 10-10 mol L-1, the enhancement factor (EF) was up to 1.57 × 107, and relative standard deviation (RSD) was 7.49 %. By this method, tricyclazole solution at a concentration of 0.01 mg L-1 was still detectable by the FPI@Ag SERS substrate. The linear quantification was achieved in the range from 100 mg L-1 to 0.01 mg L-1. Two mixed pesticides, tricyclazole and imazalil, were also successfully distinguished. SIGNIFICANCE This represents the formation of a flexible, foldable and transparent substrate for rapid on-site detection. Results can be obtained in <5 min by attaching the substrate to the substance to be tested. And the SERS substrate prepared with high sensitivity, stability, portable and convenient analysis, which provided new ideas for efficient and rapid household food safety detection.
Collapse
Affiliation(s)
- Siyu Wei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Xinfang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, PR China
| | - Xinyu Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Ke Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Linzhe Xu
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
4
|
Reyer A, Prinz A, Giancristofaro S, Schneider J, Bertoldo Menezes D, Zickler G, Bourret GR, Musso ME. Investigation of Mass-Produced Substrates for Reproducible Surface-Enhanced Raman Scattering Measurements over Large Areas. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25445-25454. [PMID: 28737921 DOI: 10.1021/acsami.7b06002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a versatile spectroscopic technique that suffers from reproducibility issues and usually requires complex substrate fabrication processes. In this article, we report the use of a simple mass production technology based on Blu-ray disc manufacturing technology to prepare large area SERS substrates (∼40 mm2) with a high degree of homogeneity (±7% variation in Raman signal) and enhancement factor of ∼6 × 106. An industrial high throughput injection molding process was used to generate periodic microstructured polymer substrates coated with a thin Ag film. A short chemical etching step produces a highly dense layer of Ag nanoparticles at the polymer surface, which leads to a large and reproducible Raman signal. Finite difference time domain simulations and cathodoluminescence mapping experiments suggest that the sample microstructure is responsible for the generation of SERS active nanostructures around the microwells. Comparison with commercial SERS substrates demonstrates the validity of our method to prepare cost-efficient, reliable, and sensitive SERS substrates.
Collapse
Affiliation(s)
- Andreas Reyer
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Adrian Prinz
- STRATEC Consumables GmbH, Sonystrasse 20, 5081 Anif/Salzburg, Austria
| | | | - Johannes Schneider
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Durval Bertoldo Menezes
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
- Federal Institute of Triângulo Mineiro, Doutor Randolfo Borges Júnior , 2900, Univerdecidade, 38064-300 Uberaba, Minas Gerias, Brazil
| | - Gregor Zickler
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Gilles R Bourret
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Maurizio E Musso
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| |
Collapse
|
5
|
|