1
|
Yang Z, Chen G, Shen J, Ma C, Gu J, Zhu C, Li L, Gao H. A hydrogen bonding based SERS method for direct label-free L-hydroxyproline detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122834. [PMID: 37178585 DOI: 10.1016/j.saa.2023.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The detection of non-protein nitrogen adulterants is a major challenge in dairy testing. As a marker molecule of animal hydrolyzed protein, the presence of non-edible L-hydroxyproline (L-Hyp) molecules can be used to identify low-quality milk containing components of animal hydrolyzed protein. However, it is still difficult to detect L-Hyp directly in milk. The Ag@COF-COOH substrate in this paper can be used to realize label-free L-Hyp sensitive detection based on the hydrogen bond transition mechanism. To explore the mechanism, the binding sites of hydrogen bond interaction have been verified experimentally and computationally, and the charge transfer process was also explained in terms of HOMO/LOMO energy level. In conclusion, the quantitative models for L-Hyp in an aqueous environment and in milk were developed. The limit of detection (LOD) of L-Hyp in an aqueous environment could reach 8.18 ng/mL, with R2 of 0.982. The linear range of quantitative detection in milk was 0.5-1000 μg/mL and the LOD was as low as 0.13 μg/mL. In this work, a hydrogen bond interaction based Surface-enhanced Raman spectroscopy (SERS) method for the label-free detection of L-Hyp was proposed, which complemented the application of SERS technology in the detection of dairy products.
Collapse
Affiliation(s)
- Zichen Yang
- School of Science, Jiangnan University, Wuxi, China; School of Internet of Things Engineering, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China.
| | - Jialu Shen
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| |
Collapse
|
2
|
Nkobole N, Prinsloo G. 1H-NMR and LC-MS Based Metabolomics Analysis of Wild and Cultivated Amaranthus spp. Molecules 2021; 26:molecules26040795. [PMID: 33557008 PMCID: PMC7913636 DOI: 10.3390/molecules26040795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Amaranthus crops are important for their use as food and nutritional sources, as well as for their medicinal properties. They are mostly harvested from the wild, and cultivation of Amaranthus species is still rare, and therefore, attempts are being made to commercialize and market this important crop. This research investigated the effect of cultivation and environment on the chemical profile of both cultivated and wild A. cruentus and A. hybridus by multivariate statistical analysis of spectral data deduced by Nuclear Magnetic Resonance (NMR). Furthermore, wild samples of A. cruentus and A. hybridus were subjected to Liquid Chromatography-Mass Spectrometry (LC-MS) for further analysis. Through NMR analysis, it was found that maltose and sucrose increased in both cultivated A. cruentus and A. hybridus. Moreover, the amino acid, proline was present in cultivated A. cruentus in high quantity whereas, proline and leucine were prominent in A. hybridus. Other compounds that were found in both wild and cultivated A. cruentus and A. hybridus are trehalose, trigonelline, lactulose, betaine, valine, alanine, fumarate, formate and kynurenine. LC-MS analysis revealed the presence of rutin, 2-phenylethenamine and amaranthussaponin I in both wild A. cruentus and A. hybridus, while chlorogenic acid was identified only in cultivated A. hybridus. On the contrary, L-tryptophan, kaempferol, phenylalanine and quercetin were detected only in wild A. cruentus. Amaranth is not only rich in macro and micronutrients, but the leaves also contain phytochemicals that vary between species and cultivated plants, and might, therefore, affect the medicinal properties of the material.
Collapse
|
3
|
Sagaama A, Issaoui N. Design, molecular docking analysis of an anti-inflammatory drug, computational analysis and intermolecular interactions energy studies of 1-benzothiophene-2-carboxylic acid. Comput Biol Chem 2020; 88:107348. [PMID: 32739798 PMCID: PMC7384430 DOI: 10.1016/j.compbiolchem.2020.107348] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023]
Abstract
In this paper, theoretical study on molecular geometry, vibrational, pharmaceutical and electronic properties of the monomeric and dimeric structures of 1-benzothiophene-2-carboxylic acid (2BT) were carried out using B3LYP hybrid functional with 6-311++G(d,p) as basis set. The structural study show that the stability of 2BT crystalline structure arising from O-H…O, C-H…O as well as S-H…O hydrogen bonding interactions. Vibrational analysis, for monomer and dimer species, show a good compatibility between experimental and theoretical frequencies. Then, the 1H and 13C NMR chemical shifts were calculated using Gauge Independent Atomic Orbital (GIAO) technical. In addition, the UV-Vis spectrum was simulated in gas phase and in water throughout TD-DFT calculation. The electronic transitions were identified based on HOM-LUMO energies. However, donor-acceptor interactions and charge delocalization has been studied via natural bond orbital (NBO). The nucleophilic and electrophilic site localization is identified by molecular electrostatic potential. Hirshfeld surface analysis has been discussed based on color code demonstrating the various non covalent interactions. Besides, molecular docking analysis was reported to evince the pharmaceutical properties of the studied molecule.
Collapse
Affiliation(s)
- Abir Sagaama
- University of Monastir, Laboratory of Quantum and Statistical Physics LR18ES18, Faculty of Sciences, Monastir 5079, Tunisia
| | - Noureddine Issaoui
- University of Monastir, Laboratory of Quantum and Statistical Physics LR18ES18, Faculty of Sciences, Monastir 5079, Tunisia.
| |
Collapse
|
4
|
Jing X, Wang X, Zhang W, An J, Luo P, Nie Y, Xu Y. Highly Regioselective and Stereoselective Hydroxylation of Free Amino Acids by a 2-Oxoglutarate-Dependent Dioxygenase from Kutzneria albida. ACS OMEGA 2019; 4:8350-8358. [PMID: 31459923 PMCID: PMC6648376 DOI: 10.1021/acsomega.9b00983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 05/13/2023]
Abstract
Hydroxyl amino acids have tremendous potential applications in food and pharmaceutical industries. However, available dioxygenases are limited for selective and efficient hydroxylation of free amino acids. Here, we identified a 2-oxoglutarate-dependent dioxygenase from Kutzneria albida by gene mining and characterized the encoded protein (KaPH1). KaPH1 was estimated to have a molecular weight of 29 kDa. The optimal pH and temperature for its l-proline hydroxylation activity were 6.5 and 30 °C, respectively. The K m and k cat values of KaPH1 were 1.07 mM and 0.54 s-1, respectively, for this reaction by which 120 mM l-proline was converted to trans-4-hydroxy-l-proline with 92.8% yield (3.93 g·L-1·h-1). EDTA, [1,10-phenanthroline], Cu2+, Zn2+, Co2+, and Ni2+ inhibited this reaction. KaPH1 was also active toward l-isoleucine for 4-hydroxyisoleucine synthesis. Additionally, the unique biophysical features of KaPH1 were predicted by molecular modeling whereby this study also contributes to our understanding of the catalytic mechanisms of 2-oxoglutarate-dependent dioxygenases.
Collapse
Affiliation(s)
- Xiaoran Jing
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinye Wang
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenli Zhang
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianhong An
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengjie Luo
- China
National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, 37 Guangqu Road, Beijing 100022, China
- E-mail: (P.L.)
| | - Yao Nie
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- E-mail: (Y.N.)
| | - Yan Xu
- Key
Laboratory of Industrial Biotechnology of Ministry of Education
and School of Biotechnology and State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
5
|
Charles Vincent V, Kirubavathi K, Bakiyaraj G, Selvaraju K. Experimental and theoretical investigations of 4-hydroxy L-proline cadmium chloride nonlinear optical crystal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:61-70. [PMID: 30597435 DOI: 10.1016/j.saa.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The solution grown structure 4-hydroxy L-proline cadmium chloride (4HLPCC) single crystal has been done by means of X-ray diffraction method. The computational quantum mechanical modelling method was performed with B3LYP level and LanL2DZ basis set to determine optimized geometry, dipolar moment, linear polarizability, first order hyperpolarizability, atomic charges of various atoms, thermodynamic parameters, HOMO-LUMO energy gap and vibrational frequencies of 4HLPCC. The vibrational frequencies of 4HLPCC were observed experimentally through FTIR and FT-RAMAN analyses and compared with theoretical frequencies. The electric properties were detected by dielectric studies. The frequency doubling of the grown crystal was made with Kurtz-Perry powder technique.
Collapse
Affiliation(s)
- V Charles Vincent
- PG & Research Department of Physics, Government Arts College, Ariyalur 621713, India
| | - K Kirubavathi
- PG & Research Department of Physics, Government Arts College, Ariyalur 621713, India
| | - G Bakiyaraj
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology (formerly known as SRM University), Kattankulathur, 603203, India
| | - K Selvaraju
- PG & Research Department of Physics, Government Arts College, Ariyalur 621713, India.
| |
Collapse
|
6
|
5-Methyl-2-hydroxy-acetophenone-S-methyl-thiosemicarbazone and its nickel-PPh3 complex. Synthesis, characterization, and DFT calculations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Theoretical and experimental investigations on molecular structure of 7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one with cytotoxic studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|