1
|
Das R, Dash PP, Bishoyi AK, Mohanty P, Mishra L, Prusty L, Sahoo CR, Padhy RN, Mishra M, Sahoo H, Sahoo SK, Sethi SK, Jali BR. Antibacterial and cytotoxicity studies of pyrrolo-based organic scaffolds and their binding interaction with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8725-8743. [PMID: 38829386 DOI: 10.1007/s00210-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute of Technology, Surat, 395007, Gujarat, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
2
|
Parsadanyan MA, Shahinyan MA, Mikaelyan MS, Grigoryan SV, Poghosyan GH, Vardevanyan PO. Influence of millimeter range electromagnetic waves on bovine serum albumin interaction with acridine orange. Electromagn Biol Med 2024; 43:246-255. [PMID: 39068541 DOI: 10.1080/15368378.2024.2383683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The effect of non-ionizing millimeter range electromagnetic waves (MM EMW) (30-300 GHz) on the bovine serum albumin (BSA) interaction peculiarities with acridine orange (AO) has been studied in vitro. The frequencies 41.8 and 50.3 GHz were chosen, since the first one is nonresonant frequency for the water, while the second one is resonant for water. The binding constant and number of binding sites were calculated at both irradiation presence and absence. AO was revealed to bind to BSA, while after the protein irradiation the interaction force strengthens. However, it was also shown that there are differences of the interaction parameters while irradiating by 41.8 or 50.3 GHz. AO binds to BSA, irradiated by MM EMW with the frequency 41.8 GHz much more weaker, than to that, irradiated by MM EMW with the frequency 50.3 GHz.
Collapse
Affiliation(s)
- M A Parsadanyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - M A Shahinyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - M S Mikaelyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - S V Grigoryan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - G H Poghosyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - P O Vardevanyan
- Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
3
|
Opačak S, Pernar Kovač M, Brozovic A, Piantanida I, Kirin SI. Turn-on fluorescence of ruthenium pyrene complexes in response to bovine serum albumin. Dalton Trans 2023; 52:11698-11704. [PMID: 37555301 DOI: 10.1039/d3dt02289g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Two novel pyrene triphenylphosphine ruthenium conjugates act as fluorescent turn-on beacons for serum albumin, being non-fluorescent in aqueous media but exhibiting strong emission upon binding to BSA. The selective cytotoxicity of the compounds against tumour cells is enhanced upon irradiation by UV-light, paving the way for application in photodynamic therapy under two-photon excitation.
Collapse
Affiliation(s)
- Saša Opačak
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | | | - Anamaria Brozovic
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Ivo Piantanida
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Srećko I Kirin
- Ruđer Boškovic Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Giel MC, Owyong TC, Hong Y. The synthesis and application of a colour-switch β-arylethenesulfonyl fluoride fluorescent probe in the detection of serum albumin. Aust J Chem 2022. [DOI: 10.1071/ch22165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins play a pivotal role in regulating important physiological processes and serve as important biomarkers for many diseases. Herein, we present a new strategy for bovine serum albumin (BSA) detection using a novel colour-switch fluorescent probe CPV-ESF ((E)-2-(4-((Z)-1-cyano-2-(4-(diethylamino)phenyl)vinyl)phenyl)ethene-1-sulfonyl fluoride). CPV-ESF reacts with nucleophilic amino acids of BSA via 1,4-Michael addition click chemistry to create a covalently linked CPV-ESF:BSA complex, which can be easily detected by a fluorescence colour-switch response. The sensing mechanism, sensitivity and selectivity of CPV-ESF for BSA detection as well as its application for cell imaging have been investigated.
Collapse
|
5
|
Dhanshri S, Vardhan S, Sahoo SK. Fluorescent turn-on sensing of albumin proteins (BSA and ovalbumin) using vitamin B 6 cofactor derived Schiff base. Methods 2022; 206:69-76. [PMID: 36049704 DOI: 10.1016/j.ymeth.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The detection of albumin proteins with high accuracy by facile analytical approaches is important for the diagnosis of various diseases. This manuscript introduced an easy-to-prepare Schiff base L by condensing vitamin B6 cofactor pyridoxal 5'-phosphate (PLP) with 2-aminothiophenol for the fluorescence turn-on sensing of bovine serum albumin (BSA) and ovalbumin (OVA). The weakly emissive L showed a significant fluorescence enhancement at 485 and 490 nm in the presence of OVA and BSA with an estimated sensitivity limit of 1.7 µM and 0.3 µM, respectively. The formation of protein-ligand complex restricted the free intramolecular rotation of L is expected to show the selective fluorescence enhancement. The molecular docking and molecular dynamics simulations were performed to examine the binding affinity and modes between BSA/OVA and L. The practical utility of L as a fluorescent turn-on sensor was validated by quantifying BSA and OVA in various real biological samples of milk, serum, egg white and urine with good recovery percentages.
Collapse
Affiliation(s)
- Sonkeshriya Dhanshri
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
6
|
Babak MV, Le Faouder P, Trivelli X, Venkatesan G, Bezzubov SI, Kajjout M, Gushchin AL, Hanif M, Poizat O, Vezin H, Rolando C. Heteroleptic Ruthenium(II) Complexes with Bathophenanthroline and Bathophenanthroline Disulfonate Disodium Salt as Fluorescent Dyes for In-Gel Protein Staining. Inorg Chem 2020; 59:4527-4535. [DOI: 10.1021/acs.inorgchem.9b03679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria V. Babak
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| | - Pauline Le Faouder
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| | - Xavier Trivelli
- Univ. Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 – IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, National University of Singapore, Lower Kent Ridge Road, 18 Science Drive 2, Singapore 119260
| | - Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Mohammed Kajjout
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| | - Artem L. Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Olivier Poizat
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l’Environnement, F-59000 Lille, France
| | - Hervé Vezin
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l’Environnement, F-59000 Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| |
Collapse
|
7
|
Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta 2020; 207:120317. [DOI: 10.1016/j.talanta.2019.120317] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
|
8
|
Lin F, Das P, Zhao Y, Shen B, Hu R, Zhou F, Liu L, Qu J. Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells. BIOMEDICAL OPTICS EXPRESS 2020; 11:149-159. [PMID: 32010506 PMCID: PMC6968756 DOI: 10.1364/boe.11.000149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Bovine serum albumin (BSA) has a wide range of physiological functions involving the binding, transportation, and delivery of fatty acids, porphyrins, bilirubin, steroids, etc. In the present study, we prepared a small squaraine dye (SD), which can selectively detect BSA using fluorescence lifetime imaging microscopy (FLIM), to monitor the endocytosis of BSA in live cultured cells in real time. This approach revealed that BSA uptake is concentration-dependent in living cells. Furthermore, we used paclitaxel (PTX), a chemotherapeutic drug, to influence the endocytosis of BSA in living cells. The results demonstrated that the endocytic rate was clearly reduced after pretreatment with 0.4 µM PTX for 2 h. The present study demonstrates the potential value of using the fluorescence lifetime of SD to detect BSA concentration and study the physiological mechanism of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fangrui Lin
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Pintu Das
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Feifan Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| |
Collapse
|
9
|
Anish Babu A, Karthick K, Subramanian R, Swarnalatha K. Exploring the structural interaction of BSA with amine functionalized ruthenium(II) metal complex. J Biomol Struct Dyn 2019; 38:4032-4039. [PMID: 31630620 DOI: 10.1080/07391102.2019.1683071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Athanas Anish Babu
- Photochemistry Research Laboratory, Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Kamaraj Karthick
- Photochemistry Research Laboratory, Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Ramasamy Subramanian
- Department of Chemistry, Manonmaniam Sundaranar University College, Govindaperi, Tirunelveli, Tamil Nadu, India
| | - Kalaiyar Swarnalatha
- Photochemistry Research Laboratory, Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
10
|
Zhao D, Zhang Q, Zhang Y, Liu Y, Pei Z, Yuan Z, Sang S. Sandwich-type Surface Stress Biosensor Based on Self-Assembled Gold Nanoparticles in PDMS Film for BSA Detection. ACS Biomater Sci Eng 2019; 5:6274-6280. [DOI: 10.1021/acsbiomaterials.9b01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Jahanban-Esfahlan A, Ostadrahimi A, Jahanban-Esfahlan R, Roufegarinejad L, Tabibiazar M, Amarowicz R. Recent developments in the detection of bovine serum albumin. Int J Biol Macromol 2019; 138:602-617. [DOI: 10.1016/j.ijbiomac.2019.07.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022]
|
12
|
Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Akbay N, Taskin Tok T, Seferoğlu Z, Gökoğlu E. Investigation of binding properties of two ethidium derivatives with serum albumins: spectral and computational approach. J Biomol Struct Dyn 2018; 36:3114-3121. [DOI: 10.1080/07391102.2017.1380536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nuriye Akbay
- Department of Chemistry, Istanbul Medeniyet University, 34700 Istanbul, Turkey
| | - Tugba Taskin Tok
- Department of Chemistry, Gaziantep University, 27310 Gaziantep, Turkey
| | | | - Elmas Gökoğlu
- Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
14
|
Christopher Leslee DB, Karuppannan S, Vengaian KM, Gandhi S, Subramanian S. Carbazole–azine based fluorescence ‘
off–on
’ sensor for selective detection of Cu
2+
and its live cell imaging. LUMINESCENCE 2017. [DOI: 10.1002/bio.3332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Sekar Karuppannan
- Department of Chemistry Anna University – University College of Engineering Dindigul India
| | | | - Sivaraman Gandhi
- Institute for Stem Cell Biology and Regenerative Medicine Bangalore India
| | | |
Collapse
|
15
|
Wang QL, Li J, Li XD, Tao WJ, Ding LS, Luo P, Qing LS. An efficient direct competitive nano-ELISA for residual BSA determination in vaccines. Anal Bioanal Chem 2017; 409:4607-4614. [DOI: 10.1007/s00216-017-0403-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
|
16
|
Rezende JDP, Ferreira GMD, Ferreira GMD, da Silva LHM, do Carmo Hepanhol da Silva M, Pinto MS, Pires ACDS. Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:535-543. [DOI: 10.1016/j.msec.2016.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
|
17
|
In vitro and in vivo antitumor activity of a novel carbonyl ruthenium compound, the ct-[RuCl(CO)(dppb)(bipy)]PF6[dppb = 1,4-bis(diphenylphosphine)butane and bipy = 2,2′-bipyridine]. J Inorg Biochem 2016; 164:42-48. [DOI: 10.1016/j.jinorgbio.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
|
18
|
Zhang LL, Ma FF, Kuang YF, Cheng S, Long YF, Xiao QG. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 154:98-102. [PMID: 26519916 DOI: 10.1016/j.saa.2015.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/16/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λ(max)) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH=2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λ(max) corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL(-1) to 100.0 ng mL(-1) with the correlation coefficient of r=0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL(-1).
Collapse
Affiliation(s)
- Ling Ling Zhang
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Xinshao Teachers Training College, China
| | - Fang Fang Ma
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yang Fang Kuang
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shu Cheng
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yun Fei Long
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Qiu Guo Xiao
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
19
|
Jana SK, Mandal AK, Kumar A, Puschmann H, Hossain M, Dalai S. Sensing of tryptophan by a non-toxic cobalt(ii) complex. RSC Adv 2016. [DOI: 10.1039/c6ra16086g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first report of a cobalt(ii) based non-toxic, hemocompatible, fluorescent probe that sense Trp and BSA by reducing internal fluorescence quenching of Trp in aqueous solution.
Collapse
Affiliation(s)
- Swapan Kumar Jana
- Department of Chemistry & Chemical Technology
- Vidyasagar University
- India
| | | | - Anoop Kumar
- Department of Biotechnology
- University of North Bengal
- India
| | | | - Maidul Hossain
- Department of Chemistry & Chemical Technology
- Vidyasagar University
- India
| | - Sudipta Dalai
- Department of Chemistry & Chemical Technology
- Vidyasagar University
- India
| |
Collapse
|
20
|
Mathavan A, Ramdass A, Rajagopal S. A Spectroscopy Approach for the Study of the Interaction of Oxovanadium(IV)-Salen Complexes with Proteins. J Fluoresc 2015; 25:1141-9. [PMID: 26139532 DOI: 10.1007/s10895-015-1604-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
Abstract
Oxovanadium(IV)-salen complexes bind with bovine serum albumin (BSA) and ovalbumin (OVA) strongly with binding constant in the range 10(4)-10(7) M(-1) at physiological pH (7.4) confirmed using UV-visible absorption, fluorescence spectral and circular dichroism (CD) study. CD results show that the binding of oxovanadium(IV) complexes induces the conformational change with the loss of α-helicity in the proteins. Docking studies indicate that mode of binding of oxovanadium(IV)-salen complexes with proteins is hydrophobic in nature.
Collapse
Affiliation(s)
- Alagarsamy Mathavan
- Department of Chemistry, V. O. Chidambaram College, Tuticorin, 628 008, India
| | | | | |
Collapse
|
21
|
Garcia PF, Toneatto J, Silvero MJ, Argüello GA. Binding of [Cr(phen)3](3+) to transferrin at extracellular and endosomal pHs: potential application in photodynamic therapy. Biochim Biophys Acta Gen Subj 2014; 1840:2695-701. [PMID: 24972167 DOI: 10.1016/j.bbagen.2014.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Transferrin is an iron-binding blood plasma glycoprotein that controls the level of free iron in biological fluids. This protein has been deeply studied in the past few years because of its potential use as a strategy of drug targeting to tumor tissues. Chromium complex, [Cr(phen)3](3+) (phen=1,10-phenanthroline), has been proposed as photosensitizers for photodynamic therapy (PDT). Thus, we analyzed the binding of chromium complex, [Cr(phen)3](3+), to transferrin for a potential delivery of this diimine complex to tumor cells for PDT. METHODS The interaction between [Cr(phen)3](3+) and holotransferrin (holoTf) was studied by fluorescence quenching technique, circular dichroism (CD) and ultraviolet (UV)-visible spectroscopy. RESULTS [Cr(phen)3](3+) binds strongly to holoTf with a binding constant around 10(5)M(-1), that depends on the pH. The thermodynamic parameters indicated that hydrophobic interactions played a major role in the binding processes. The CD studies showed that there are no conformational changes in the secondary and tertiary structures of the protein. CONCLUSIONS These results suggest that the binding process would occur in a site different from the specific iron binding sites of the protein and would be the same in both protein states. As secondary and tertiary structures of transferrin do not show remarkable changes, we propose that the TfR could recognize the holoTf despite having a chromium complex associated. GENERAL SIGNIFICANCE Understanding the interaction between [Cr(phen)3](3+) with transferrin is relevant because this protein could be a delivery agent of Cr(III) complex to tumor cells. This can allow us to understand further the role of Cr(III) complex as sensitizer in PDT.
Collapse
Affiliation(s)
- Pablo F Garcia
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Judith Toneatto
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Jazmín Silvero
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gerardo A Argüello
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|