Selective Monitoring of Oxyanion Mixtures by a Flow System with Raman Detection.
SENSORS 2018;
18:s18072196. [PMID:
29986534 PMCID:
PMC6069446 DOI:
10.3390/s18072196]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
Abstract
Raman spectroscopy is a selective detection system scarcely applied for the flow analysis of solutions with the aim of detecting several compounds at once without a previous separation step. This work explores the potential of a portable Raman system in a flow system for the selective detection of a mixture of seven oxyanions (carbonate, sulphate, nitrate, phosphate, chlorate, perchlorate, and thiosulphate). The specific bands of these compounds (symmetric stretching Raman active vibrations of carbonate at 1068 cm−1, nitrate at 1049 cm−1, thiosulphate at 998 cm−1, phosphate at 989 cm−1, sulphate at 982 cm−1, perchlorate at 935 cm−1, and chlorate at 932 cm−1) enabled their simultaneous detection in mixtures. Although the oxyanions’ limit of detection (LOD) was rather poor (in the millimolar range), this extremely simple system is very useful for the single-measurement detection of most of the oxyanions in mixtures, without requiring a previous separation step. In addition, quantitative determination of the desired oxyanion can be performed by means of the corresponding calibration line. These are important advantages for controlling in-line processes in industries like those manufacturing fertilizers, pharmaceuticals, chemicals, or food, among others.
Collapse