1
|
Huang R, Qin Y, Huang Y, Huang Z, Ye GJ. A convenient smartphone-assisted colorimetric for 6-Mercaptopurine detection using enhanced oxidase-like activity of β-cyclodextrin modified MnO 2 nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124493. [PMID: 38796891 DOI: 10.1016/j.saa.2024.124493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
6-mercaptopurine (6-MP) is widely used in the treatment of many diseases, but exhibits some serious side effects due to its toxicity. Therefore, it is important and imperative to effectively control and monitoring concentration of 6-MP. Herein, we designed a smartphone-assisted colorimetric sensing platform for 6-MP detection, based on an excellent β-cyclodextrin modified MnO2 nanosheets (β-CD@MnO2 NNS) mediated oxidase-like activity. β-CD@MnO2 NNS can directly oxidizes 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB with color changes, yielding more than 3-fold higher oxidase-like catalytic activity compared with individual MnO2 NNS. After adding 6-MP, β-CD@MnO2 NNS can be reduced to Mn2+ and lose their oxidase-like properties, resulting in a color and absorbance change for sensitive and selectivity detection of 6-MP. Meanwhile, the smartphone-based color recognition application can intuitively and simply measure the concentration of 6-MP. The limits of detection UV-vis instrument and smartphone were 0.35 μM and 0.86 μM, respectively. This method has also been successfully applied to the detection of real samples. Finally, this study provides a new promising platform for detection of 6-MP and is expected to be used in application of pharmaceutical analysis and biomedicine.
Collapse
Affiliation(s)
- Ruiqi Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Yingfeng Qin
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Basic Medical Sciences, Nanning 530021, PR China.
| | - Yanqin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Zengqiong Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China.
| | - Gao-Jie Ye
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
2
|
Rajpal, Jana S, Ojha RP, Prakash R. A novel turn-on fluorescence sensor based on the Nd (III) complex for the ultrasensitive detection of 6-mercaptopurine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124056. [PMID: 38447438 DOI: 10.1016/j.saa.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
6-mercaptopurine (6MP) is a chemotherapeuticdrug widely used for treating inflammatory bowel diseases and several cancers. Nevertheless, determining and monitoring its concentration in the human body is highly important because over or under-doses of 6MP can lead to critical health issues. In this paper, we have developed a turn-on fluorescent probe for the determination of the anticancer drug 6-mercaptopurine (6-MP) based on coordination complex [Nd (Anth)3 (H2O)3]. [Nd (Anth)3 (H2O)3] has been synthesized through a simple precipitation process taking the stoichiometric ratio of Nd (III) nitrate hexahydrate and 2-aminobenzoic acid (2-ABA), commonly known as anthranilic acid (Anth). The synthesis and structure have been investigated and validated by different characterizations like UV-visible spectroscopy, FT-IR, HRMS, XPS, and SEM. The synthesized complex displayed excellent fluorescence properties, and the fluorescence intensity was enhanced with the addition of 6MP in the form of a [Fe (6MP)3]2+ mixed complex (Fe-6MP), which is formed by dissolving it in FeCl3. The fabricated sensors displayed the best linear response in a wide range of concentrations from 2.55 μM to 45.51 μM of 6MP. The lower limit of detection (LOD) of the developed sensor was found to be 0.26 μM with a linear correlation coefficient (R2) of 0.99. The synthesized probe gives an acceptable response for the sensing of 6MP in the presence of several interfering agents.
Collapse
Affiliation(s)
- Rajpal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Subhajit Jana
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Prakash Ojha
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rajiv Prakash
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
3
|
Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2022; 1222:340178. [DOI: 10.1016/j.aca.2022.340178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
|
4
|
Ashrafzadeh Afshar E, Taher MA, Karimi-Maleh H, Karaman C, Joo SW, Vasseghian Y. Magnetic nanoparticles based on cerium MOF supported on the MWCNT as a fluorescence quenching sensor for determination of 6-mercaptopurine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119230. [PMID: 35395348 DOI: 10.1016/j.envpol.2022.119230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new magnetic nanocomposite was developed as an efficient and fast-response fluorescence quenching sensor for determination of anticancer drug 6-mercaptopurine (6-MP). For this purpose, the needle-shape fluorescence metal-organic framework of cerium (Ce-MOF) were successfully synthesized on the surface of multiwalled carbon nanotubes using 1,3,5-benzenetricarboxylic acid ligand via a facile solvothermal assisted route and magnetized. The accuracy of the proposed synthesis was confirmed using the FT-IR, FE-SEM, XRD, and VSM methods. The obtained product as presented the fluorescence emission in 331 nm by excitation of 293 nm in excitation/emission slit widths of 10.0 nm. The operation of suggested method is based on quenching the fluorescence signal in accordance with increasing the 6-MP concentration. The proposed assay effectively detected the trace amount of 6-MP in the linear range of 1.0 × 10-6 to 7 × 10-5 M. The limit of detection and limit of quantification were obtained as 8.6 × 10-7 and 2.86 × 10-6 M, respectively. The analyte molecule was determined in real samples with satisfactory recoveries between 98.75 and 105.33.
Collapse
Affiliation(s)
- Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
5
|
Salari R, Hallaj T. A dual colorimetric and fluorometric sensor based on N, P-CDs and shape transformation of AgNPrs for the determination of 6-mercaptopurine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120104. [PMID: 34218180 DOI: 10.1016/j.saa.2021.120104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, we designed a dual colorimetric and fluorometric sensor by using nitrogen and phosphor doped carbon dots (N, P-CDs) and Ag nanoprisms (AgNPrs) to detect 6-mercaptopurine (6-MP). For this purpose, we applied the AgNPrs/I- mixture to establish a shape transformation based colorimetric method for the detection of 6-MP. The assay mechanism of colorimetric method was based on etching and protecting effect of I- and 6-MP on the AgNPrs. In the presence of I-, as an etching agent, the solution color altered from blue to purple and the position of AgNPrs' local surface plasmon resonance (LSPR) peak shifted to the blue wavelengths. This phenomenon was assigned to the morphological change of AgNPrs. In the presence of 6-MP, AgNPrs were protected from etching by I-, so the LSPR peak position and solution color of AgNPrs remained unchangeable. Furthermore, the fluorescence intensity of N, P-CDs decreased with adding AgNPrs/I- due to the spectral overlap between etched AgNPrs and N, P-CDs. The CDs' quenched fluorescence was restored in the presence of 6-MP, as a result of the protecting effect of 6-MP on the AgNPrs. These facts have been applied to develop a dual sensor for the determination of 6-MP at the range of 10-500 nM and 30-500 nM by colorimetric and fluorometric detection methods. The detection limits were obtained 10 and 4 nM for fluorometric and colorimetric methods, respectively. The developed sensor was utilized for dual signal analysis of 6-MP in human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Rana Salari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
6
|
Chen P, Peng H, Zhang Z, Zhang Z, Chen Y, Chen J, Zhu X, Peng J. Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Bhasin H, Mishra D. Metal Organic Frameworks: A Versatile Class of Hybrid Compounds for Luminescent Detection and Adsorptive Removal of Enviromental Hazards. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
8
|
An X, Chen R, Chen Q, Tan Q, Pan S, Liu H, Hu X. A MnO 2 nanosheet-assisted ratiometric fluorescence probe based on carbon quantum dots and o-phenylenediamine for determination of 6-mercaptopurine. Mikrochim Acta 2021; 188:156. [PMID: 33825037 DOI: 10.1007/s00604-021-04802-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/20/2021] [Indexed: 12/25/2022]
Abstract
A MnO2 nanosheet-assisted ratiometric fluorescence probe based on carbon quantum dots (CQDs) and o-phenylenediamine (OPD) has been developed for the detection of the anticancer drug 6-mercaptopurine (6-MP). CQDs with strong fluorescence are synthesized via the one-step hydrothermal method. MnO2 nanosheets as an oxidase-mimicking nanomaterial directly oxidize OPD into 2,3-diaminophenazine (DAP) which has a fluorescence emission at 570 nm, whereas the fluorescence of CQDs at 445 nm is then reduced by the DAP through the inner filter effect (IFE) under a single excitation wavelength (370 nm). After adding 6-MP, MnO2 nanosheets can be reduced to Mn2+ and lose their oxidase-like property, blocking the IFE with the fluorescence decrease of DAP and fluorescence increase of CQDs. The novel ratiometric fluorescence probe exhibits considerable sensitivity toward 6-MP and linear response is in the 0.46-100.0 μmol L-1 concentration range with the detection limit of 0.14 μmol L-1. Furthermore, the probe shows good selectivity when exposed to a series of interfering other organic and inorganic compounds, and biomolecules and can be applied to the detection for 6-MP in human serum samples and pharmaceutical tablets. Satisfactory recoveries of 6-MP in human serum samples are in the range 96.1-110.9% with the RSD of 1.4 to 3.2%. The amount of 6-MP is successfully estimated as 49.3 mg in pharmaceutical tablet with the RSD of about 2.2%.
Collapse
Affiliation(s)
- Xuanxuan An
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ruchun Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qizhen Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shuang Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hui Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaoli Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
9
|
Yin L, Wang Y, Tan R, Li H, Tu Y. Determination of β-amyloid oligomer using electrochemiluminescent aptasensor with signal enhancement by AuNP/MOF nanocomposite. Mikrochim Acta 2021; 188:53. [PMID: 33496823 DOI: 10.1007/s00604-021-04710-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/10/2021] [Indexed: 01/17/2023]
Abstract
In order to effectively and conveniently detect the β-amyloid oligomer (AβO) for earlier diagnosis of Alzheimer's disease (AD), a disposable aptamer biosensor has been developed with high performance, facile operation, and low cost. Using a nanocomposite by in situ reduction of chloroauric acid to decorate Au nanoparticles (AuNPs) on Fe-MIL-88NH2 material via Au-N bond to effectively enhance the electrochemiluminescence (ECL) of luminol, the functioned basal electrode provides adequate background for sensing response. When the aptamer is linked via Au-S bond on the surface, the sensor gets the ability of specific recognition and coalescence toward the target (AβO). After incubating the sample on the aptasensor, its ECL signal is inhibited owing to the steric hindrance of the AβO macromolecules. The relative inhibition ratio linearly depends to the logarithm of AβO concentration in the range 0.1 pM to 10 pM, with an LOD of 71 fM. The aptasensor has high selectivity to AβO among its analogs. The recoveries in human serum were 98.9-105.4%. This research provides a new approach for sensitive detection of AβO in clinic laboratories for investigation and diagnosis of AD.
Collapse
Affiliation(s)
- Lixiu Yin
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yueju Wang
- First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Huiling Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
10
|
Mousavi A, Zare-Dorabei R, Mosavi SH. A novel hybrid fluorescence probe sensor based on metal-organic framework@carbon quantum dots for the highly selective detection of 6-mercaptopurine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5397-5406. [PMID: 33125019 DOI: 10.1039/d0ay01592j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, MIL-101(Fe) and amine-carbon quantum dots (CQDs) were combined via a post-synthetic modification (PSM) method; thus, a novel MIL-101(Fe)@amine-CQD hybrid fluorescent probe sensor for the detection of 6-mercaptopurine (6-MP) was synthesized. Amine-CQDs as a fluorescent material can convert the bonding interaction between MIL-101(Fe) and 6-MP into recognizable fluorescence signals, and MIL-101 (Fe) as an adsorbent can pre-concentrate 6-MP. Hereupon, this new sensor demonstrates high selectivity and sensitivity towards the detection of 6-MP. The addition of 6-MP to this probe quenches the fluorescence signal at 599 nm. In this study, factors such as pH, response time, and concentration of MIL-101(Fe)@amine-CQDs were optimized by the one-factor-at-a-time (OFAT) method. Under optimal conditions, the relationship between the fluorescence enhancement factor and the concentration of 6-MP for this sensor in the range of 0.1667-1.0000 μg L-1 was linear (R2 = 0.9977, n = 3). The limit of detection and limit of quantitation were 55.70 ng L-1 and 202.06 ng L-1, respectively, which are better than similar techniques. The repeatability of intra-day and inter-day was 2.4% and 4.7%, respectively. This fluorescent sensor was employed to determine 6-MP in real samples and exhibited acceptable results.
Collapse
Affiliation(s)
- Aida Mousavi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | | | | |
Collapse
|
11
|
Yang Y, Liu W, Cao J, Wu Y. On-site, rapid and visual determination of Hg2+ and Cu2+ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTe QDs. Food Chem 2020; 328:127119. [DOI: 10.1016/j.foodchem.2020.127119] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
12
|
Duan J, Li Y, Hou Q, Lv W, Dai L, Ai S. A Facile Colorimetric Sensor for 6-Mercaptopurine Based on Silver Nanoparticles. ANAL SCI 2020; 36:515-517. [PMID: 32378526 DOI: 10.2116/analsci.20c006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 08/09/2023]
Abstract
A facile colorimetric method was developed for detecting 6-mercaptopurine (6-MP) using silver nanoparticles (AgNPs). The addition of 6-MP to AgNPs led to the aggregation of AgNPs with a color change from yellow to brown. The ratio between the absorbance at 394 and 530 nm (A394/A530) was used for a quantitative analysis of 6-MP. A linear range of 0 - 0.5 μM was obtained with a detection limit of 10 nM. The developed method is cost-effective and simple.
Collapse
Affiliation(s)
- Junling Duan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qin Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wei Lv
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Li Dai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
13
|
A spectroscopic and computational intervention of interaction of lysozyme with 6-mercaptopurine. Anal Bioanal Chem 2020; 412:2565-2577. [DOI: 10.1007/s00216-020-02483-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
|
14
|
|
15
|
Cai XO, Sun M, Shao YJ, Liu F, Liu QL, Zhu YY, Sun ZG, Dong DP, Li J. Two Highly Stable Luminescent Lead Phosphonates Based on Mixed Ligands: Highly Selective and Sensitive Sensing for Thymine Molecule and VO 3 - Anion. ACS OMEGA 2018; 3:16443-16452. [PMID: 31458280 PMCID: PMC6643760 DOI: 10.1021/acsomega.8b02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 06/10/2023]
Abstract
Two luminescent lead phosphonates with two-dimensional (2D) layer and three-dimensional (3D) framework structure, namely, Pb3[(L1)2(Hssc)(H2O)2] (1) and [Pb2(L2)0.5(bts)(H2O)2]·H2O (2) (H2L1 = O(CH2CH2)2NCH2PO3H2, H4L2 = H2PO3CH2NH(C2H4)2NHCH2PO3H2, H3ssc = 5-sulfosalicylic acid, NaH2bts = 5-sulfoisophthalic acid sodium) have been prepared via hydrothermal techniques. The two compounds not only show excellent thermal stability but also remain intact in aqueous solution within an extensive pH range. Moreover, the atomic absorption spectroscopy analysis experiment indicates that there does not exist the leaching of Pb2+ ions from the lead phosphonates, which show they are nontoxic in aqueous solution. In compound 1, the Pb(1)O4, Pb(2)O7, Pb(3)O4, and CPO3 polyhedra are interlinked into a one-dimensional chain, which is further connected to adjacent chain by sharing the Hssc2- to form a 2D layer. Interestingly, compound 1 as a highly selective and sensitive luminescent material can be used to detect the thymine molecule with a very low detection limit of 8.26 × 10-7 M. In compound 2, the Pb(1)O6 and Pb(2)O5 polyhedra are interlinked into a dimer via edge sharing, which is further connected to adjacent dimer to form a tetramer via corner sharing, and such a tetramer is then interlinked into a 2D layer through bts3- ligands; the adjacent 2D layers are finally constructed to a 3D structure by sharing the L2 4- ligand. Compound 2 can be applied as an excellent luminescent sensor for sensing of VO3 - anion. Furthermore, the probable fluorescent quenching mechanisms of the two compounds have also been studied.
Collapse
Affiliation(s)
- Xiao-Ou Cai
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Meng Sun
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Yu-Jing Shao
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Fang Liu
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Qun-Li Liu
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Yan-Yu Zhu
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Zhen-Gang Sun
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| | - Da-Peng Dong
- School
of Physics and Materials Engineering, Dalian
Nationalities University, Dalian 116600, P. R. China
| | - Jing Li
- School
of Chemistry and Chemical Engineering, Liaoning
Normal University, Dalian 116029, P. R. China
| |
Collapse
|
16
|
Preparation of strongly fluorescent water-soluble dithiothreitol modified gold nanoclusters coated with carboxychitosan, and their application to fluorometric determination of the immunosuppressive 6-mercaptopurine. Mikrochim Acta 2018; 185:400. [DOI: 10.1007/s00604-018-2933-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
17
|
|
18
|
Jin M, Mou ZL, Zhang RL, Liang SS, Zhang ZQ. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Biosens Bioelectron 2017; 91:162-168. [DOI: 10.1016/j.bios.2016.12.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
19
|
Li Y, You X, Shi X. Enhanced Chemiluminescence Determination of Hydrogen Peroxide in Milk Sample Using Metal–Organic Framework Fe–MIL–88NH2 as Peroxidase Mimetic. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0617-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Sun ZJ, Jiang JZ, Li YF. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal–organic frameworks–hydrogen peroxide system. Analyst 2015; 140:8201-8. [DOI: 10.1039/c5an01673h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel and simple spectrofluorometry method for the recognition of biothiols using metal–organic frameworks Fe-MIL-88 and H2O2 is developed.
Collapse
Affiliation(s)
- Zheng Juan Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jun Ze Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|